On semi-transitive orientability of circulant graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Eshwar Srinivasan, Ramesh Hariharasubramanian
{"title":"On semi-transitive orientability of circulant graphs","authors":"Eshwar Srinivasan,&nbsp;Ramesh Hariharasubramanian","doi":"10.1016/j.dam.2025.08.025","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> is said to be <em>word-representable</em> if a word <span><math><mi>w</mi></math></span> can be formed using the letters of the alphabet <span><math><mi>V</mi></math></span> such that for every pair of vertices <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>, <span><math><mrow><mi>x</mi><mi>y</mi><mo>∈</mo><mi>E</mi></mrow></math></span> if and only if <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span> alternate in <span><math><mi>w</mi></math></span>. A <em>semi-transitive</em> orientation is an acyclic directed graph where for any directed path <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><mo>⋯</mo><mo>→</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>, <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span> either there is no arc between <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> or for all <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mi>j</mi><mo>≤</mo><mi>m</mi></mrow></math></span> there is an arc between <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>. An undirected graph is semi-transitive if it admits a semi-transitive orientation. For given positive integers <span><math><mrow><mi>n</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span>, we consider the undirected circulant graph with set of vertices <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span> and the set of edges <span><math><mrow><mo>{</mo><mi>i</mi><mi>j</mi><mo>∣</mo><mrow><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo></mrow><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is in <span><math><mrow><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>}</mo></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&lt;</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mn>2</mn></mrow></math></span>. Recently, Kitaev and Pyatkin have shown that every 4-regular circulant graph is semi-transitive. Further, they have posed an open problem regarding the semi-transitive orientability of circulant graphs for which the elements of the set <span><math><mrow><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></math></span> are consecutive positive integers.</div><div>This paper examines the semi-transitive orientability of circulant graphs and shows that certain circulant graphs are semi-transitive while others are not, given specific assumptions. Additionally, we provide an upper bound on the representation number of certain <span><math><mi>k</mi></math></span>-regular circulant graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 498-509"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004664","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A graph G=(V,E) is said to be word-representable if a word w can be formed using the letters of the alphabet V such that for every pair of vertices x and y, xyE if and only if x and y alternate in w. A semi-transitive orientation is an acyclic directed graph where for any directed path v0v1vm, m2 either there is no arc between v0 and vm or for all 1i<jm there is an arc between vi and vj. An undirected graph is semi-transitive if it admits a semi-transitive orientation. For given positive integers n,a1,a2,,ak, we consider the undirected circulant graph with set of vertices {0,1,2,,n1} and the set of edges {ij|ij|(modn) is in {a1,a2,,ak}}, where 0<a1<a2<<ak<(n+1)/2. Recently, Kitaev and Pyatkin have shown that every 4-regular circulant graph is semi-transitive. Further, they have posed an open problem regarding the semi-transitive orientability of circulant graphs for which the elements of the set {a1,a2,,ak} are consecutive positive integers.
This paper examines the semi-transitive orientability of circulant graphs and shows that certain circulant graphs are semi-transitive while others are not, given specific assumptions. Additionally, we provide an upper bound on the representation number of certain k-regular circulant graphs.
关于循环图的半传递可定向性
图G = (V, E)据说word-representable如果一个词就可以形成w使用字母的V,每一对顶点x和y, xy∈E当且仅当x和y轮流w。semi-transitive取向是一个非循环有向图,对任何直接路径v0→v1→⋯→vm, m≥2之间没有弧v0和vm或所有1≤i< j≤m之间有一个弧vi和vj。如果一个无向图具有半传递的方向,那么它就是半传递的。对于给定的正整数n,a1,a2,…,ak,我们考虑具有顶点集{0,1,2,…,n−1}和边集{ij∣|i−j|(modn)在{a1,a2,…,ak}}的无向循环图,其中0<;a1<a2< a2<⋯<ak<(n+1)/2。最近,Kitaev和Pyatkin证明了每一个4正则循环图都是半可传递的。在此基础上,提出了集{a1,a2,…,ak}的元素为连续正整数的循环图的半传递可定向性的开放问题。本文研究了循环图的半传递可定向性,并给出了某些循环图是半传递的,而另一些循环图不是。此外,我们还给出了若干k正则循环图的表示数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信