{"title":"Rational protein design to improve the thermal stability of a Bacillus thuringiensis Vip3A protein","authors":"Thanapon Kunlawatwimon , Boonhiang Promdonkoy , Panadda Boonserm","doi":"10.1016/j.jip.2025.108429","DOIUrl":null,"url":null,"abstract":"<div><div>Vip3A proteins produced by the <em>Bacillus thuringiensis</em> bacterium exhibit insecticidal activity against various crop-damaging lepidopteran pests. However, their limited thermal stability and short shelf life render them unsuitable for use as biopesticides. In this study, we employed rational protein design to enhance the thermal stability of Vip3A64 while minimizing its negative impact on insecticidal activity. This involves substituting potential amino acids based on structural data and using a computational tool (HoTMuSiC) to predict the effect of mutations on the protein’s thermal stability as defined by the melting temperature (Tm). We then introduced eight single amino acid substitutions (V239T, V320K, A351C, A351F, D621I, N633Y, E754W, and Q771I) into the tetrameric core and solvent-exposed domains of Vip3Aa64. As determined by the protein thermal shift (PTS) assays, the N633Y and V239T mutants exhibit higher protein melting temperatures than those of the wild type, indicating their enhanced thermal stability. In contrast to other mutants, V239T and N633Y retained their insecticidal activity after one hour of exposure to the high temperature of 55 ˚C. Furthermore, after one month of storage at 37 ˚C, N633Y was the only mutant capable of killing <em>Spodoptera<!--> <!-->exigua</em> larvae, indicating that it is more stable than the other mutants and the wild type. This study highlights the potential of rational protein design to improve thermal stability and provides a framework for developing effective insecticidal proteins for sustainable agriculture.</div></div>","PeriodicalId":16296,"journal":{"name":"Journal of invertebrate pathology","volume":"213 ","pages":"Article 108429"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of invertebrate pathology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022201125001636","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vip3A proteins produced by the Bacillus thuringiensis bacterium exhibit insecticidal activity against various crop-damaging lepidopteran pests. However, their limited thermal stability and short shelf life render them unsuitable for use as biopesticides. In this study, we employed rational protein design to enhance the thermal stability of Vip3A64 while minimizing its negative impact on insecticidal activity. This involves substituting potential amino acids based on structural data and using a computational tool (HoTMuSiC) to predict the effect of mutations on the protein’s thermal stability as defined by the melting temperature (Tm). We then introduced eight single amino acid substitutions (V239T, V320K, A351C, A351F, D621I, N633Y, E754W, and Q771I) into the tetrameric core and solvent-exposed domains of Vip3Aa64. As determined by the protein thermal shift (PTS) assays, the N633Y and V239T mutants exhibit higher protein melting temperatures than those of the wild type, indicating their enhanced thermal stability. In contrast to other mutants, V239T and N633Y retained their insecticidal activity after one hour of exposure to the high temperature of 55 ˚C. Furthermore, after one month of storage at 37 ˚C, N633Y was the only mutant capable of killing Spodoptera exigua larvae, indicating that it is more stable than the other mutants and the wild type. This study highlights the potential of rational protein design to improve thermal stability and provides a framework for developing effective insecticidal proteins for sustainable agriculture.
期刊介绍:
The Journal of Invertebrate Pathology presents original research articles and notes on the induction and pathogenesis of diseases of invertebrates, including the suppression of diseases in beneficial species, and the use of diseases in controlling undesirable species. In addition, the journal publishes the results of physiological, morphological, genetic, immunological and ecological studies as related to the etiologic agents of diseases of invertebrates.
The Journal of Invertebrate Pathology is the adopted journal of the Society for Invertebrate Pathology, and is available to SIP members at a special reduced price.