Advances in multi-atom catalysts for electrocatalytic applications

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luoluo Qi, Jingqi Guan
{"title":"Advances in multi-atom catalysts for electrocatalytic applications","authors":"Luoluo Qi,&nbsp;Jingqi Guan","doi":"10.1016/j.mser.2025.101090","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-atom catalysts (MACs) can break the limitation of single-atom catalysts (SACs) by introducing metal clusters, presenting a more diversified way in the composition, structure and performance of multi-atom sites, and utilizing the synergistic effect of multi atoms and metal-support interactions to jointly regulate the electronic structure of active sites, which endow them with advantageous electrocatalytic performance and unique reaction mechanism and expand new opportunities for the electrocatalytic field. Here, we summarize synthesis strategies, <em>in situ</em> structural characterization and the features reflecting structure-activity relationships of MACs with respect to composition and configuration, electron distribution as well as multiple functional effects. Then, the design principles of high-performance MACs are accentuated, involving multi-atom sites, coordination environments, interfacial defects, reaction media, and special thoughts including bio-inspired design and computing-learning-prediction. Subsequently, the applications in energy storage and conversion technologies are provided. Lastly, we conclude with some personal thoughts and perspectives on the growth and development of MACs in their nascent state.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101090"},"PeriodicalIF":31.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001688","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-atom catalysts (MACs) can break the limitation of single-atom catalysts (SACs) by introducing metal clusters, presenting a more diversified way in the composition, structure and performance of multi-atom sites, and utilizing the synergistic effect of multi atoms and metal-support interactions to jointly regulate the electronic structure of active sites, which endow them with advantageous electrocatalytic performance and unique reaction mechanism and expand new opportunities for the electrocatalytic field. Here, we summarize synthesis strategies, in situ structural characterization and the features reflecting structure-activity relationships of MACs with respect to composition and configuration, electron distribution as well as multiple functional effects. Then, the design principles of high-performance MACs are accentuated, involving multi-atom sites, coordination environments, interfacial defects, reaction media, and special thoughts including bio-inspired design and computing-learning-prediction. Subsequently, the applications in energy storage and conversion technologies are provided. Lastly, we conclude with some personal thoughts and perspectives on the growth and development of MACs in their nascent state.
电催化用多原子催化剂的研究进展
多原子催化剂(MACs)通过引入金属团簇,打破单原子催化剂(SACs)的局限,在多原子位点的组成、结构和性能上呈现出更加多样化的方式,利用多原子和金属-载体相互作用的协同效应,共同调控活性位点的电子结构。使其具有优越的电催化性能和独特的反应机理,为电催化领域开辟了新的机遇。本文综述了MACs的合成策略、原位结构表征以及在组成和构型、电子分布和多种功能效应方面反映构效关系的特征。然后,重点介绍了高性能mac的设计原则,包括多原子位点、协调环境、界面缺陷、反应介质以及生物启发设计和计算-学习-预测等特殊思想。随后,提供了在储能和转换技术中的应用。最后,我们对mac的成长和发展提出了一些个人的想法和观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信