The nanogreen revolution: Transforming CO2 capture through sustainable nanotechnology

Francis A. Ibekwe , Humphrey S. Samuel , David A. Undie , Oluwakemi O. Akinpelu , Onimisi P. Onotu , Emmanuel E. Etim
{"title":"The nanogreen revolution: Transforming CO2 capture through sustainable nanotechnology","authors":"Francis A. Ibekwe ,&nbsp;Humphrey S. Samuel ,&nbsp;David A. Undie ,&nbsp;Oluwakemi O. Akinpelu ,&nbsp;Onimisi P. Onotu ,&nbsp;Emmanuel E. Etim","doi":"10.1016/j.nxener.2025.100395","DOIUrl":null,"url":null,"abstract":"<div><div>The urgent challenge of climate change, driven by rising atmospheric CO₂ levels, demands innovative and scalable carbon capture solutions. While conventional carbon capture and sequestration (CCS) technologies such as post-combustion, pre-combustion, and oxy-fuel combustion can achieve up to 90% CO₂ removal, their widespread adoption is hindered by high energy requirements, operational costs, and integration barriers. This review systematically analyzes the Nanogreen Revolution, which merges nanotechnology, green chemistry, and biomass-derived materials to advance CO<sub>2</sub> capture. We present a new classification of nanomaterials, including metal-organic frameworks (MOFs), nanoporous carbons, and 2-dimensional materials based on their structural features, synthesis approaches, and capture mechanisms. Recent studies reveal that amine-functionalized MOFs and graphene oxide membranes can achieve CO<sub>2</sub> capture efficiencies exceeding 95% ideal laboratory-scale settings, while also offering improved selectivity and stability. The integration of green chemistry principles into nanomaterial synthesis further reduces energy consumption and environmental impact. Despite these advances, challenges remain in scaling up production and minimizing costs. This review concludes by outlining future research directions and policy considerations, emphasizing the potential of nanotechnology-enabled CCS to accelerate progress toward net-negative emissions and inform climate mitigation strategies at both industrial and policy levels.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100395"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The urgent challenge of climate change, driven by rising atmospheric CO₂ levels, demands innovative and scalable carbon capture solutions. While conventional carbon capture and sequestration (CCS) technologies such as post-combustion, pre-combustion, and oxy-fuel combustion can achieve up to 90% CO₂ removal, their widespread adoption is hindered by high energy requirements, operational costs, and integration barriers. This review systematically analyzes the Nanogreen Revolution, which merges nanotechnology, green chemistry, and biomass-derived materials to advance CO2 capture. We present a new classification of nanomaterials, including metal-organic frameworks (MOFs), nanoporous carbons, and 2-dimensional materials based on their structural features, synthesis approaches, and capture mechanisms. Recent studies reveal that amine-functionalized MOFs and graphene oxide membranes can achieve CO2 capture efficiencies exceeding 95% ideal laboratory-scale settings, while also offering improved selectivity and stability. The integration of green chemistry principles into nanomaterial synthesis further reduces energy consumption and environmental impact. Despite these advances, challenges remain in scaling up production and minimizing costs. This review concludes by outlining future research directions and policy considerations, emphasizing the potential of nanotechnology-enabled CCS to accelerate progress toward net-negative emissions and inform climate mitigation strategies at both industrial and policy levels.
纳米绿色革命:通过可持续的纳米技术转变二氧化碳捕获
由于大气中二氧化碳含量的上升,气候变化的紧迫挑战需要创新和可扩展的碳捕获解决方案。虽然传统的碳捕获和封存(CCS)技术,如燃烧后、燃烧前和全氧燃料燃烧,可以实现高达90%的二氧化碳脱除,但它们的广泛采用受到高能量需求、运营成本和集成障碍的阻碍。这篇综述系统地分析了纳米绿色革命,它融合了纳米技术、绿色化学和生物质衍生材料来推进二氧化碳捕获。我们提出了一种新的纳米材料分类,包括金属有机框架(mof)、纳米多孔碳和基于它们的结构特征、合成方法和捕获机制的二维材料。最近的研究表明,胺功能化mof和氧化石墨烯膜可以实现超过95%的理想实验室规模设置的二氧化碳捕获效率,同时还提供了更高的选择性和稳定性。绿色化学原理与纳米材料合成的结合进一步降低了能源消耗和对环境的影响。尽管取得了这些进步,但在扩大产量和降低成本方面仍然存在挑战。这篇综述最后概述了未来的研究方向和政策考虑,强调了纳米技术支持的CCS加速实现净负排放的潜力,并为工业和政策层面的气候减缓战略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信