Huan Chen , Zhipeng Gui , Dehua Peng , Yuhang Liu , Yuncheng Ma , Huayi Wu
{"title":"ScaleFC: A scale-aware geographical flow clustering algorithm for heterogeneous origin-destination data","authors":"Huan Chen , Zhipeng Gui , Dehua Peng , Yuhang Liu , Yuncheng Ma , Huayi Wu","doi":"10.1016/j.compenvurbsys.2025.102338","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring the cluster pattern of geographical flow facilitates the understanding of the underlying process of geographical phenomena among spatial locations. Despite recent advancements in identifying flow clusters, challenges remain when handling flow data with uneven length, heterogeneous density and weak connectivity. To solve the issues, this study proposes a Scale-aware Flow Clustering algorithm (ScaleFC). It identifies flow clusters of arbitrary lengths by employing an analytical scale to generate an adjustable neighborhood range of each flow. Meanwhile, inspired by the idea of boundary-seeking clustering, ScaleFC introduces partitioning flows to identify flow clusters with different densities, and separate the weakly-connected clusters. To validate the effectiveness, we compared ScaleFC with three mainstream baselines, i.e., AFC, FlowLF and FlowDBSCAN, on six synthetic datasets. The results presented that ScaleFC can accurately identify the clusters with complex structures, achieving an average accuracy improvement of 27 %, 17 %, and 15 % over the three competitors, respectively. The application on bike-sharing data with 16,140 flow pairs from Shanghai City demonstrated that ScaleFC is capable to capture both long-distance and short-distance movements, thereby providing a more comprehensive understanding to multi-scale human mobility patterns in geographical space.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"122 ","pages":"Article 102338"},"PeriodicalIF":8.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000912","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the cluster pattern of geographical flow facilitates the understanding of the underlying process of geographical phenomena among spatial locations. Despite recent advancements in identifying flow clusters, challenges remain when handling flow data with uneven length, heterogeneous density and weak connectivity. To solve the issues, this study proposes a Scale-aware Flow Clustering algorithm (ScaleFC). It identifies flow clusters of arbitrary lengths by employing an analytical scale to generate an adjustable neighborhood range of each flow. Meanwhile, inspired by the idea of boundary-seeking clustering, ScaleFC introduces partitioning flows to identify flow clusters with different densities, and separate the weakly-connected clusters. To validate the effectiveness, we compared ScaleFC with three mainstream baselines, i.e., AFC, FlowLF and FlowDBSCAN, on six synthetic datasets. The results presented that ScaleFC can accurately identify the clusters with complex structures, achieving an average accuracy improvement of 27 %, 17 %, and 15 % over the three competitors, respectively. The application on bike-sharing data with 16,140 flow pairs from Shanghai City demonstrated that ScaleFC is capable to capture both long-distance and short-distance movements, thereby providing a more comprehensive understanding to multi-scale human mobility patterns in geographical space.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.