Symplectic normal form and growth of Sobolev norm

IF 2.3 2区 数学 Q1 MATHEMATICS
Zhenguo Liang , Jiawen Luo , Zhiyan Zhao
{"title":"Symplectic normal form and growth of Sobolev norm","authors":"Zhenguo Liang ,&nbsp;Jiawen Luo ,&nbsp;Zhiyan Zhao","doi":"10.1016/j.jde.2025.113702","DOIUrl":null,"url":null,"abstract":"<div><div>For a class of reducible Hamiltonian partial differential equations (PDEs) with arbitrary spatial dimension, quantified by a quadratic polynomial with time-dependent coefficients, we present a comprehensive classification of long-term solution behaviors within Sobolev space. This classification is achieved through the utilization of Metaplectic and Schrödinger representations. Each pattern of Sobolev norm behavior corresponds to a specific <em>n</em>−dimensional symplectic normal form, as detailed in Theorems 1.1 and 1.2.</div><div>When applied to periodically or quasi-periodically forced <em>n</em>−dimensional quantum harmonic oscillators, we identify novel growth rates for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>−</mo></math></span>norm as <em>t</em> tends to infinity, such as <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>s</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>λ</mi><mi>s</mi><mi>t</mi></mrow></msup></math></span> (with <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span>) and <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>s</mi></mrow></msup><mo>+</mo><mi>ι</mi><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn><mi>n</mi><mi>s</mi></mrow></msup></math></span> (with <span><math><mi>ι</mi><mo>≥</mo><mn>0</mn></math></span>). Notably, we demonstrate that stability in Sobolev space, defined as the boundedness of the Sobolev norm, is essentially a unique characteristic of one-dimensional scenarios, as outlined in Theorem 1.3.</div><div>As a byproduct, we discover that the growth rate of the Sobolev norm for the quantum Hamiltonian can be directly described by that of the solution to the classical Hamiltonian which exhibits the optimal growth, as articulated in Theorem 1.4.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"449 ","pages":"Article 113702"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007296","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a class of reducible Hamiltonian partial differential equations (PDEs) with arbitrary spatial dimension, quantified by a quadratic polynomial with time-dependent coefficients, we present a comprehensive classification of long-term solution behaviors within Sobolev space. This classification is achieved through the utilization of Metaplectic and Schrödinger representations. Each pattern of Sobolev norm behavior corresponds to a specific n−dimensional symplectic normal form, as detailed in Theorems 1.1 and 1.2.
When applied to periodically or quasi-periodically forced n−dimensional quantum harmonic oscillators, we identify novel growth rates for the Hsnorm as t tends to infinity, such as t(n1)seλst (with λ>0) and t(2n1)s+ιt2ns (with ι0). Notably, we demonstrate that stability in Sobolev space, defined as the boundedness of the Sobolev norm, is essentially a unique characteristic of one-dimensional scenarios, as outlined in Theorem 1.3.
As a byproduct, we discover that the growth rate of the Sobolev norm for the quantum Hamiltonian can be directly described by that of the solution to the classical Hamiltonian which exhibits the optimal growth, as articulated in Theorem 1.4.
Sobolev范数的辛范式和增长
对于一类具有任意空间维数的可约哈密顿偏微分方程(PDEs),我们给出了Sobolev空间内长期解行为的综合分类。这种分类是通过使用Metaplectic和Schrödinger表示来实现的。Sobolev范数行为的每个模式对应于特定的n维辛范式,如定理1.1和1.2中详细介绍的那样。当应用于周期或准周期强制n维量子谐振子时,我们确定了当t趋于无穷时Hs -范数的新增长率,例如t(n−1)seλst (λ>0)和t(2n−1)s+ιt2ns (ι≥0)。值得注意的是,我们证明了Sobolev空间中的稳定性,定义为Sobolev范数的有界性,本质上是一维场景的独特特征,如定理1.3所述。作为一个副产品,我们发现量子哈密顿量的Sobolev范数的增长率可以直接用经典哈密顿量的解的增长率来描述,经典哈密顿量表现出最优的增长,如定理1.4所述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信