Daily runoff simulation in humid regions using the entropy-weighted ensemble learning models

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhenyu Tang , Liping Zhang , Chen Hu , Yaze Li , Gangsheng Wang , Zhiling Zhou , Xiao Li , Zhengfeng Bao , Hui Cao , Benjun Jia
{"title":"Daily runoff simulation in humid regions using the entropy-weighted ensemble learning models","authors":"Zhenyu Tang ,&nbsp;Liping Zhang ,&nbsp;Chen Hu ,&nbsp;Yaze Li ,&nbsp;Gangsheng Wang ,&nbsp;Zhiling Zhou ,&nbsp;Xiao Li ,&nbsp;Zhengfeng Bao ,&nbsp;Hui Cao ,&nbsp;Benjun Jia","doi":"10.1016/j.envsoft.2025.106653","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional hydrological models struggle to meet the accuracy requirements for runoff simulation under climate change and anthropogenic interventions. To address this limitation, we propose ensemble learning models (ELMs) that integrate optimal process-driven and data-driven models for daily runoff simulation in two typical humid basins in China: the Xiangjiang River Basin (XJRB) and Minjiang River Basin (MJRB). Model performance is evaluated by a newly developed comprehensive index <em>CI</em> based on entropy weight method. Our results reveal that the Xin'anjiang model outperforms other process-driven models with NSE values of 0.795 (XJRB) and 0.765 (MJRB), while the Long Short-Term Memory model outperforms other data-driven models (NSE: 0.945 and 0.955, respectively). Furthermore, hybrid ELMs surpass all single models, reducing MAE and RMSE by 15 % and 21 % in XJRB, and improving the NSE by 0.157 in MJRB. This framework enhances simulation accuracy and operational robustness, demonstrating strong potential for flood risk mitigation.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106653"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003378","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional hydrological models struggle to meet the accuracy requirements for runoff simulation under climate change and anthropogenic interventions. To address this limitation, we propose ensemble learning models (ELMs) that integrate optimal process-driven and data-driven models for daily runoff simulation in two typical humid basins in China: the Xiangjiang River Basin (XJRB) and Minjiang River Basin (MJRB). Model performance is evaluated by a newly developed comprehensive index CI based on entropy weight method. Our results reveal that the Xin'anjiang model outperforms other process-driven models with NSE values of 0.795 (XJRB) and 0.765 (MJRB), while the Long Short-Term Memory model outperforms other data-driven models (NSE: 0.945 and 0.955, respectively). Furthermore, hybrid ELMs surpass all single models, reducing MAE and RMSE by 15 % and 21 % in XJRB, and improving the NSE by 0.157 in MJRB. This framework enhances simulation accuracy and operational robustness, demonstrating strong potential for flood risk mitigation.
基于熵加权集合学习模型的湿润地区日径流模拟
传统水文模型难以满足气候变化和人为干预下径流模拟的精度要求。为了解决这一限制,我们提出了集成学习模型(ELMs),该模型集成了中国两个典型湿润流域:湘江流域(XJRB)和岷江流域(MJRB)的最佳过程驱动和数据驱动模型。采用一种基于熵权法的综合指标CI对模型性能进行评价。结果表明,新安江模型的NSE值分别为0.795 (XJRB)和0.765 (MJRB),长短期记忆模型的NSE值分别为0.945和0.955,优于其他过程驱动模型。此外,混合elm优于所有单一模型,XJRB的MAE和RMSE分别降低了15%和21%,MJRB的NSE提高了0.157。该框架提高了模拟精度和操作稳健性,展示了减轻洪水风险的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信