Phebe Lemaire, Arno de Reviere, Dhanjay Sharma, Valérie Ruaux, Jaouad Al Atrach, Valentin Valtchev, Joris Thybaut, Maarten Sabbe and An Verberckmoes*,
{"title":"The Influence of Mesopore Architecture in Hierarchical H-ZSM-5 on n-Butanol Dehydration","authors":"Phebe Lemaire, Arno de Reviere, Dhanjay Sharma, Valérie Ruaux, Jaouad Al Atrach, Valentin Valtchev, Joris Thybaut, Maarten Sabbe and An Verberckmoes*, ","doi":"10.1021/acsengineeringau.5c00033","DOIUrl":null,"url":null,"abstract":"<p >Zeolites are among the most widely employed catalysts in the (petro-)chemical industry. However, due to their elaborate microporous network, they are prone to diffusion limitations and deactivation. Several modification methods have been proposed to overcome these limitations, each exhibiting their benefits. In this work, two of the most promising strategies were combined, i.e., limiting the length of one of the crystal axes during synthesis to achieve a platelike morphology and introducing mesoporosity, creating a hierarchical platelike H-ZSM-5. The platelike morphology was obtained by adding urea as a growth modifier to the synthesis mixture, and mesopores were introduced in the platelike H-ZSM-5 through etching with a NaOH/TPAOH mixture. As a benchmark, the same etching procedure was applied to a commercial ZSM-5 counterpart. These materials were tested in the n-butanol dehydration, where the platelike morphology exhibited an improved catalytic performance, significantly increasing the activity per acid site and stability, and slightly increasing the selectivity toward the butenes. The generation of mesopores in commercial ZSM-5 also increased the activity per acid site but reduced the catalyst’s stability, likely due to an increased amount of Lewis acid sites upon etching. When applying the same modification method to the platelike H-ZSM-5, much larger mesopores and some macropores were observed. These further increased the stability of the catalyst but barely affected the activity per acid site, presumably due to the already optimized catalytic performance of the platelike H-ZSM-5.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"5 4","pages":"434–449"},"PeriodicalIF":5.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.5c00033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.5c00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zeolites are among the most widely employed catalysts in the (petro-)chemical industry. However, due to their elaborate microporous network, they are prone to diffusion limitations and deactivation. Several modification methods have been proposed to overcome these limitations, each exhibiting their benefits. In this work, two of the most promising strategies were combined, i.e., limiting the length of one of the crystal axes during synthesis to achieve a platelike morphology and introducing mesoporosity, creating a hierarchical platelike H-ZSM-5. The platelike morphology was obtained by adding urea as a growth modifier to the synthesis mixture, and mesopores were introduced in the platelike H-ZSM-5 through etching with a NaOH/TPAOH mixture. As a benchmark, the same etching procedure was applied to a commercial ZSM-5 counterpart. These materials were tested in the n-butanol dehydration, where the platelike morphology exhibited an improved catalytic performance, significantly increasing the activity per acid site and stability, and slightly increasing the selectivity toward the butenes. The generation of mesopores in commercial ZSM-5 also increased the activity per acid site but reduced the catalyst’s stability, likely due to an increased amount of Lewis acid sites upon etching. When applying the same modification method to the platelike H-ZSM-5, much larger mesopores and some macropores were observed. These further increased the stability of the catalyst but barely affected the activity per acid site, presumably due to the already optimized catalytic performance of the platelike H-ZSM-5.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)