Philip Widmaier, Leon P. M. Brendel, Stefan S. Bertsch, André Bardow and Dennis Roskosch*,
{"title":"One Mixture to Rule Them All: Enhancing Efficiency and Standardization of Industrial High-Temperature Heat Pumps","authors":"Philip Widmaier, Leon P. M. Brendel, Stefan S. Bertsch, André Bardow and Dennis Roskosch*, ","doi":"10.1021/acsengineeringau.4c00060","DOIUrl":null,"url":null,"abstract":"<p >High-temperature heat pumps are preferred for decarbonizing many industrial processes, but are still being adopted slowly. Major barriers to adoption are low efficiency, leading to high operational cost, and the need for custom-made designs, increasing investment cost. In this work, refrigerant mixtures are exploited to overcome these barriers for high-temperature heat pump adoption. Mixtures have been known to improve heat pump efficiency if their nonisothermal phase change is matched to heat source and sink temperature changes. Beyond that, we improve standardization by using mixture composition as an additional degree of freedom to tailor a standard heat pump designed for a specific refrigerant pair to various applications. By model-band screening of 703 refrigerant pairs across 81 combinations of heat source and sink temperature changes, we identify a maximum COP advantage of 26% for a refrigerant mixture when the maximum heat source and sink temperature changes of 40 K occur. Several mixtures are identified yielding near-optimal efficiencies across all 81 heat source and sink temperature changes. The best all-rounder mixture, diethyl ether/cyclopropane, retains, on average, 97% efficiency of the individually optimal mixtures. These findings support the development of more efficient and less costly high-temperature heat pumps, a crucial step in the heat transition.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"5 4","pages":"359–369"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.4c00060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature heat pumps are preferred for decarbonizing many industrial processes, but are still being adopted slowly. Major barriers to adoption are low efficiency, leading to high operational cost, and the need for custom-made designs, increasing investment cost. In this work, refrigerant mixtures are exploited to overcome these barriers for high-temperature heat pump adoption. Mixtures have been known to improve heat pump efficiency if their nonisothermal phase change is matched to heat source and sink temperature changes. Beyond that, we improve standardization by using mixture composition as an additional degree of freedom to tailor a standard heat pump designed for a specific refrigerant pair to various applications. By model-band screening of 703 refrigerant pairs across 81 combinations of heat source and sink temperature changes, we identify a maximum COP advantage of 26% for a refrigerant mixture when the maximum heat source and sink temperature changes of 40 K occur. Several mixtures are identified yielding near-optimal efficiencies across all 81 heat source and sink temperature changes. The best all-rounder mixture, diethyl ether/cyclopropane, retains, on average, 97% efficiency of the individually optimal mixtures. These findings support the development of more efficient and less costly high-temperature heat pumps, a crucial step in the heat transition.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)