Efficient Second-Harmonic Emission with Strong Modal Overlap in a Single-Resonant Lithium Niobate Nanocavity

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhi Jiang, Danyang Yao*, Yu Gao, Xu Ran, Duomao Li, Erqi Zhang, Jianguo Wang, Xuetao Gan*, Jinchuan Zhang*, Fengqi Liu and Yue Hao, 
{"title":"Efficient Second-Harmonic Emission with Strong Modal Overlap in a Single-Resonant Lithium Niobate Nanocavity","authors":"Zhi Jiang,&nbsp;Danyang Yao*,&nbsp;Yu Gao,&nbsp;Xu Ran,&nbsp;Duomao Li,&nbsp;Erqi Zhang,&nbsp;Jianguo Wang,&nbsp;Xuetao Gan*,&nbsp;Jinchuan Zhang*,&nbsp;Fengqi Liu and Yue Hao,&nbsp;","doi":"10.1021/acsphotonics.5c01039","DOIUrl":null,"url":null,"abstract":"<p >Integrated nonlinear optical devices are essential for next-generation photonic technologies, yet achieving high-efficiency second-harmonic generation (SHG) in compact systems remains a significant challenge. Here, we demonstrate a high-<i>Q</i> single-resonant photonic crystal nanobeam cavity on a polymer-loaded lithium niobate on insulator platform that achieves a record-high normalized SHG conversion efficiency of 163%/W. This efficiency outperforms previous LN-based photonic crystal cavities by over 3 orders of magnitude, primarily driven by strong modal overlap. The device generates visible SH light at 768.77 nm with a single-lobe radiation pattern and precise spectral alignment between fundamental and second-harmonic modes. Importantly, the SHG efficiency remains stable across a temperature range of up to 20 °C, addressing a common limitation in multiresonant systems. Our work establishes a new benchmark for SHG in lithium niobate microcavities and provides a scalable, thermally stable platform for integrated nonlinear photonics, with applications in quantum optics and chip-scale interconnects.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 8","pages":"4623–4629"},"PeriodicalIF":6.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01039","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrated nonlinear optical devices are essential for next-generation photonic technologies, yet achieving high-efficiency second-harmonic generation (SHG) in compact systems remains a significant challenge. Here, we demonstrate a high-Q single-resonant photonic crystal nanobeam cavity on a polymer-loaded lithium niobate on insulator platform that achieves a record-high normalized SHG conversion efficiency of 163%/W. This efficiency outperforms previous LN-based photonic crystal cavities by over 3 orders of magnitude, primarily driven by strong modal overlap. The device generates visible SH light at 768.77 nm with a single-lobe radiation pattern and precise spectral alignment between fundamental and second-harmonic modes. Importantly, the SHG efficiency remains stable across a temperature range of up to 20 °C, addressing a common limitation in multiresonant systems. Our work establishes a new benchmark for SHG in lithium niobate microcavities and provides a scalable, thermally stable platform for integrated nonlinear photonics, with applications in quantum optics and chip-scale interconnects.

Abstract Image

单共振铌酸锂纳米腔中具有强模态重叠的高效二次谐波发射
集成非线性光学器件对于下一代光子技术至关重要,但在紧凑系统中实现高效的二次谐波产生(SHG)仍然是一个重大挑战。在这里,我们在聚合物负载的铌酸锂绝缘体平台上展示了高q单共振光子晶体纳米束腔,实现了创纪录的高归一化SHG转换效率,达到163%/W。这种效率比以前基于lnn的光子晶体腔高出3个数量级以上,主要是由强模态重叠驱动的。该装置产生768.77 nm的可见SH光,具有单瓣辐射模式和基频和二次谐波模式之间的精确光谱对准。重要的是,SHG效率在高达20°C的温度范围内保持稳定,解决了多谐振系统中的常见限制。我们的工作为铌酸锂微腔中的SHG建立了一个新的基准,并为集成非线性光子学提供了一个可扩展的、热稳定的平台,可用于量子光学和芯片级互连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信