Nikolaus Hondl, Lena Neubauer, Victoria Ramos-Garcia, Julia Kuligowski, Marina Bishara, Eva Sevcsik, Bernhard Lendl and Georg Ramer*,
{"title":"Method for Mid-IR Spectroscopy of Extracellular Vesicles at the Subvesicle Level","authors":"Nikolaus Hondl, Lena Neubauer, Victoria Ramos-Garcia, Julia Kuligowski, Marina Bishara, Eva Sevcsik, Bernhard Lendl and Georg Ramer*, ","doi":"10.1021/acsmeasuresciau.5c00001","DOIUrl":null,"url":null,"abstract":"<p >Extracellular vesicles (EVs) are nanosized particles that are associated with various physiological and pathological functions. They play a key role in intercell communication and are used as transport vehicles for various cell components. In human milk, EVs are believed to be important for the development of acquired immunity. State-of-the-art analysis methods are not able to provide label-free chemical information at the single-vesicle level. We introduce a protocol to profile the structure and composition of individual EVs with the help of atomic force microscopy infrared spectroscopy (AFM-IR), a nanoscale chemical imaging technique. The protocol includes the immobilization of EVs onto a silicon surface functionalized with anti-CD9 antibodies via microcontact printing. AFM-IR measurements of immobilized EVs provide size information and mid-infrared spectra at subvesicle spatial resolution. The received spectra compare favorably to bulk reference spectra. A key part of our protocol is a technique to acquire spectral information about a large number of EVs through hyperspectral imaging combined with image processing to correct for image drift and select individual vesicles.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 4","pages":"469–476"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmeasuresciau.5c00001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.5c00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are nanosized particles that are associated with various physiological and pathological functions. They play a key role in intercell communication and are used as transport vehicles for various cell components. In human milk, EVs are believed to be important for the development of acquired immunity. State-of-the-art analysis methods are not able to provide label-free chemical information at the single-vesicle level. We introduce a protocol to profile the structure and composition of individual EVs with the help of atomic force microscopy infrared spectroscopy (AFM-IR), a nanoscale chemical imaging technique. The protocol includes the immobilization of EVs onto a silicon surface functionalized with anti-CD9 antibodies via microcontact printing. AFM-IR measurements of immobilized EVs provide size information and mid-infrared spectra at subvesicle spatial resolution. The received spectra compare favorably to bulk reference spectra. A key part of our protocol is a technique to acquire spectral information about a large number of EVs through hyperspectral imaging combined with image processing to correct for image drift and select individual vesicles.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.