Achieving inclusive healthcare through integrating education and research with AI and personalized curricula.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Amir Bahmani, Kexin Cha, Arash Alavi, Amit Dixit, Antony Ross, Ryan Park, Francesca Goncalves, Shirley Ma, Paul Saxman, Ramesh Nair, Ramin Akhavan-Sarraf, Xin Zhou, Meng Wang, Kévin Contrepois, Jennifer Li-Pook-Than, Emma Monte, David Jose Florez Rodriguez, Jaslene Lai, Mohan Babu, Abtin Tondar, Sophia Miryam Schüssler-Fiorenza Rose, Ilya Akbari, Xinyue Zhang, Kritika Yegnashankaran, Joseph Yracheta, Kali Dale, Alison Derbenwick Miller, Scott Edmiston, Eva M McGhee, Camille Nebeker, Joseph C Wu, Anshul Kundaje, Michael Snyder
{"title":"Achieving inclusive healthcare through integrating education and research with AI and personalized curricula.","authors":"Amir Bahmani, Kexin Cha, Arash Alavi, Amit Dixit, Antony Ross, Ryan Park, Francesca Goncalves, Shirley Ma, Paul Saxman, Ramesh Nair, Ramin Akhavan-Sarraf, Xin Zhou, Meng Wang, Kévin Contrepois, Jennifer Li-Pook-Than, Emma Monte, David Jose Florez Rodriguez, Jaslene Lai, Mohan Babu, Abtin Tondar, Sophia Miryam Schüssler-Fiorenza Rose, Ilya Akbari, Xinyue Zhang, Kritika Yegnashankaran, Joseph Yracheta, Kali Dale, Alison Derbenwick Miller, Scott Edmiston, Eva M McGhee, Camille Nebeker, Joseph C Wu, Anshul Kundaje, Michael Snyder","doi":"10.1038/s43856-025-01034-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precision medicine promises significant health benefits but faces challenges such as complex data management and analytics, interdisciplinary collaboration, and education of researchers, healthcare professionals, and participants. Addressing these needs requires the integration of computational experts, engineers, designers, and healthcare professionals to develop user-friendly systems and shared terminologies. The widespread adoption of large language models (LLMs) such as Generative Pretrained Transformer (GPT) and Claude highlights the importance of making complex data accessible to non-specialists.</p><p><strong>Methods: </strong>We evaluated the Stanford Data Ocean (SDO) precision medicine training program's learning outcomes, AI Tutor performance, and learner satisfaction by assessing self-rated competency on key learning objectives through pre- and post-learning surveys, along with formative and summative assessment completion rates. We also analyzed AI Tutor accuracy and learners' self-reported satisfaction, and post-program academic and career impacts. Additionally, we demonstrated the capabilities of the AI Data Visualization tool.</p><p><strong>Results: </strong>SDO demonstrates the ability to improve learning outcomes for learners from broad educational and socioeconomic backgrounds with the support of the AI Tutor. The AI Data Visualization tool enables learners to interpret multi-omics and wearable data and replicate research findings.</p><p><strong>Conclusions: </strong>SDO strives to mitigate challenges in precision medicine through a scalable, cloud-based platform that supports data management for various data types, advanced research, and personalized learning. SDO provides AI Tutors and AI-powered data visualization tools to enhance educational and research outcomes and make data analysis accessible to users from broad educational backgrounds. By extending engagement and cutting-edge research capabilities globally, SDO particularly benefits economically disadvantaged and historically marginalized communities, fostering interdisciplinary biomedical research and bridging the gap between education and practical application in the biomedical field.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"356"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01034-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Precision medicine promises significant health benefits but faces challenges such as complex data management and analytics, interdisciplinary collaboration, and education of researchers, healthcare professionals, and participants. Addressing these needs requires the integration of computational experts, engineers, designers, and healthcare professionals to develop user-friendly systems and shared terminologies. The widespread adoption of large language models (LLMs) such as Generative Pretrained Transformer (GPT) and Claude highlights the importance of making complex data accessible to non-specialists.

Methods: We evaluated the Stanford Data Ocean (SDO) precision medicine training program's learning outcomes, AI Tutor performance, and learner satisfaction by assessing self-rated competency on key learning objectives through pre- and post-learning surveys, along with formative and summative assessment completion rates. We also analyzed AI Tutor accuracy and learners' self-reported satisfaction, and post-program academic and career impacts. Additionally, we demonstrated the capabilities of the AI Data Visualization tool.

Results: SDO demonstrates the ability to improve learning outcomes for learners from broad educational and socioeconomic backgrounds with the support of the AI Tutor. The AI Data Visualization tool enables learners to interpret multi-omics and wearable data and replicate research findings.

Conclusions: SDO strives to mitigate challenges in precision medicine through a scalable, cloud-based platform that supports data management for various data types, advanced research, and personalized learning. SDO provides AI Tutors and AI-powered data visualization tools to enhance educational and research outcomes and make data analysis accessible to users from broad educational backgrounds. By extending engagement and cutting-edge research capabilities globally, SDO particularly benefits economically disadvantaged and historically marginalized communities, fostering interdisciplinary biomedical research and bridging the gap between education and practical application in the biomedical field.

通过将教育和研究与人工智能和个性化课程相结合,实现包容性医疗保健。
背景:精准医疗承诺显著的健康效益,但面临挑战,如复杂的数据管理和分析,跨学科合作,以及研究人员,医疗保健专业人员和参与者的教育。解决这些需求需要计算专家、工程师、设计人员和医疗保健专业人员的集成,以开发用户友好的系统和共享术语。大型语言模型(llm)的广泛采用,如生成预训练转换器(GPT)和Claude,突出了使非专业人员可以访问复杂数据的重要性。方法:我们通过学习前和学习后的调查,以及形成性和总结性评估完成率,评估斯坦福数据海洋(SDO)精准医学培训项目的学习成果、人工智能导师的表现和学习者满意度。我们还分析了人工智能导师的准确性和学习者自我报告的满意度,以及项目后的学术和职业影响。此外,我们还演示了人工智能数据可视化工具的功能。结果:在人工智能导师的支持下,SDO展示了为具有广泛教育和社会经济背景的学习者改善学习成果的能力。人工智能数据可视化工具使学习者能够解释多组学和可穿戴数据并复制研究结果。结论:SDO通过支持各种数据类型、高级研究和个性化学习的数据管理的可扩展、基于云的平台,努力减轻精准医疗中的挑战。SDO提供人工智能导师和人工智能驱动的数据可视化工具,以增强教育和研究成果,并使具有广泛教育背景的用户能够访问数据分析。通过在全球范围内扩大参与和尖端研究能力,SDO特别有利于经济上处于不利地位和历史上被边缘化的社区,促进跨学科生物医学研究,弥合生物医学领域教育与实际应用之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信