Enhancing medical response efficiency in real-time large crowd environments via smart coverage and deep learning for stable ecological health monitoring.
Asma A Alhashmi, Ghada Moh Samir Elhessewi, Mukhtar Ghaleb, Nazir Ahmad, Nojood O Aljehane, Tareq M Alkhaldi, Hamad Almansour, Samah Al Zanin
{"title":"Enhancing medical response efficiency in real-time large crowd environments via smart coverage and deep learning for stable ecological health monitoring.","authors":"Asma A Alhashmi, Ghada Moh Samir Elhessewi, Mukhtar Ghaleb, Nazir Ahmad, Nojood O Aljehane, Tareq M Alkhaldi, Hamad Almansour, Samah Al Zanin","doi":"10.1038/s41598-025-15629-x","DOIUrl":null,"url":null,"abstract":"<p><p>Festivals and city-wide mass events are prevalent in human societies worldwide, drawing large crowds. Such events range from concerts with a dozen attendees to large-scale actions with thousands of viewers. It is the highest priority for each organizer of such an occasion to be capable of upholding a higher standard of safety and minimizing the danger of events, especially medical emergencies. Therefore, establishing sufficient safety measures is significant. There is a requirement for event organizers and emergency response personnel to identify developing, potentially critical crowd situations at an early stage during city-wide mass assemblies. In general, the localization of the global positioning system (GPS) and proximity-based tracking is employed to capture intricate crowd dynamics throughout an event. Recently, technology has been used in numerous diverse ways to achieve these large crowds. For example, computer vision-based models are employed to observe the flexibility and behaviour of crowds. In this manuscript, a model for Medical Response Efficiency in Real-Time Large Crowd Environments via Smart Coverage and Hiking Optimisation (MRELC-SCHO) is presented, aiming to maintain stable ecological health. The primary objective of this paper is to propose an effective method for enhancing medical response efficiency in large crowd environments by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO model utilizes min-max normalization to transform the input data into a structured format. Furthermore, the Chimp Optimisation Algorithm (CHOA) model is employed for the feature selection (FS) process to select the most significant features from the dataset. Additionally, the MRELC-SCHO technique utilizes the bidirectional long short-term memory with an auto-encoder (BiLSTM-AE) method for classification. Finally, the parameter selection for the BiLSTM-AE model is performed by using the Hiking Optimisation Algorithm (HOA) model. The experimentation of the MRELC-SCHO approach is accomplished under the Ecological Health dataset. The comparison analysis of the MRELC-SCHO approach revealed a superior accuracy value of 98.56% compared to existing models.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"30000"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-15629-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Festivals and city-wide mass events are prevalent in human societies worldwide, drawing large crowds. Such events range from concerts with a dozen attendees to large-scale actions with thousands of viewers. It is the highest priority for each organizer of such an occasion to be capable of upholding a higher standard of safety and minimizing the danger of events, especially medical emergencies. Therefore, establishing sufficient safety measures is significant. There is a requirement for event organizers and emergency response personnel to identify developing, potentially critical crowd situations at an early stage during city-wide mass assemblies. In general, the localization of the global positioning system (GPS) and proximity-based tracking is employed to capture intricate crowd dynamics throughout an event. Recently, technology has been used in numerous diverse ways to achieve these large crowds. For example, computer vision-based models are employed to observe the flexibility and behaviour of crowds. In this manuscript, a model for Medical Response Efficiency in Real-Time Large Crowd Environments via Smart Coverage and Hiking Optimisation (MRELC-SCHO) is presented, aiming to maintain stable ecological health. The primary objective of this paper is to propose an effective method for enhancing medical response efficiency in large crowd environments by utilizing advanced optimization algorithms. Initially, the MRELC-SCHO model utilizes min-max normalization to transform the input data into a structured format. Furthermore, the Chimp Optimisation Algorithm (CHOA) model is employed for the feature selection (FS) process to select the most significant features from the dataset. Additionally, the MRELC-SCHO technique utilizes the bidirectional long short-term memory with an auto-encoder (BiLSTM-AE) method for classification. Finally, the parameter selection for the BiLSTM-AE model is performed by using the Hiking Optimisation Algorithm (HOA) model. The experimentation of the MRELC-SCHO approach is accomplished under the Ecological Health dataset. The comparison analysis of the MRELC-SCHO approach revealed a superior accuracy value of 98.56% compared to existing models.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.