Ling Chen, Zhipeng Huang, Mathias Middelboe, Deng Deng, Yingfei Ma
{"title":"Synergistic effects of commensals and phage predation in suppressing colonization by pathogenic Vibrio parahaemolyticus.","authors":"Ling Chen, Zhipeng Huang, Mathias Middelboe, Deng Deng, Yingfei Ma","doi":"10.1038/s41522-025-00802-x","DOIUrl":null,"url":null,"abstract":"<p><p>Colonization resistance is a fundamental mechanism by which microbiomes suppress pathogen invasion; however, the ecological and mechanistic determinants of its efficacy remain incompletely understood. Here, we constructed a defined microbial consortium and employed in vivo shrimp infection models to investigate the synergistic interaction between commensal microbes and a pathogen-specific phage in suppressing the pathogen Vibrio parahaemolyticus. Our in vitro experiment revealed that combining key taxa, particularly with phage integration, markedly enhanced pathogen exclusion. Furthermore, we demonstrated that establishing the consortium prior to pathogen exposure resulted in the irreversible suppression of pathogen proliferation, highlighting the critical importance of timing. Mechanistic analyses revealed that nutrient competition from commensals triggered prophage activation in the pathogen, thereby inhibiting its proliferation. Leveraging these insights, we rationally designed a minimalist, yet effective consortium that, when coupled with phage predation, consistently conferred robust colonization resistance in shrimp. This study delineates the core ecological principle underlying microbiota-mediated colonization resistance and establishes a tractable phage-commensal framework for pathogen control, with translational relevance in the context of rising antibiotic resistance in aquatic and potentially mammalian systems.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"163"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00802-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colonization resistance is a fundamental mechanism by which microbiomes suppress pathogen invasion; however, the ecological and mechanistic determinants of its efficacy remain incompletely understood. Here, we constructed a defined microbial consortium and employed in vivo shrimp infection models to investigate the synergistic interaction between commensal microbes and a pathogen-specific phage in suppressing the pathogen Vibrio parahaemolyticus. Our in vitro experiment revealed that combining key taxa, particularly with phage integration, markedly enhanced pathogen exclusion. Furthermore, we demonstrated that establishing the consortium prior to pathogen exposure resulted in the irreversible suppression of pathogen proliferation, highlighting the critical importance of timing. Mechanistic analyses revealed that nutrient competition from commensals triggered prophage activation in the pathogen, thereby inhibiting its proliferation. Leveraging these insights, we rationally designed a minimalist, yet effective consortium that, when coupled with phage predation, consistently conferred robust colonization resistance in shrimp. This study delineates the core ecological principle underlying microbiota-mediated colonization resistance and establishes a tractable phage-commensal framework for pathogen control, with translational relevance in the context of rising antibiotic resistance in aquatic and potentially mammalian systems.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.