{"title":"Seed Biopriming From Basics to Omics: Relieving Plants From Biotic Stress Through the Microbial Way","authors":"Shriniketan Puranik, Jayashree Mekali, Kamala Jayanthi Pagadala Damodaram","doi":"10.1002/jobm.70083","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>From seed to harvest, cultivated crops face numerous biotic stresses, including insects, nematodes, and diseases, which significantly hinder their growth and vigor, resulting in substantial crop losses. In contrast to use of toxic agrochemicals, seed biopriming with microbial inoculants has emerged as an effective and eco-friendly alternative against pathogens and pests. Seed biopriming involves coating seeds with beneficial microorganisms that enhance protection and immunity against a variety of harmful pests and pathogens. These microbial agents colonize the seeds and establish themselves in the rhizosphere, reducing the impact of biotic stresses while fostering a healthier environment for plant growth. They are known to exhibit several mechanisms against pathogens and pests, like production of cell wall degrading enzymes, antibiosis, competition, induced systemic resistance, chelation of iron <i>etc</i>. Additionally, these microorganisms regulate phytohormone levels, further optimizing the physiological and metabolic characteristics of plants. This approach not only promotes robust plant growth but also enhances tolerance to deleterious bacteria, fungi, nematodes and arthropods, ensuring healthier crops. These interactions can further be well studied and expressed by using different omics approaches like metagenomics (of seed microbiome), proteomics, transcriptomics, metabolomics and differential gene expression. This review highlights the role and benefits of seed biopriming as a sustainable strategy to manage biotic stresses effectively, and the importance of omics for better understanding of complex processes during such interactions, contributing to resilient agricultural production systems and environmental sustainability.</p>\n </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"65 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jobm.70083","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
From seed to harvest, cultivated crops face numerous biotic stresses, including insects, nematodes, and diseases, which significantly hinder their growth and vigor, resulting in substantial crop losses. In contrast to use of toxic agrochemicals, seed biopriming with microbial inoculants has emerged as an effective and eco-friendly alternative against pathogens and pests. Seed biopriming involves coating seeds with beneficial microorganisms that enhance protection and immunity against a variety of harmful pests and pathogens. These microbial agents colonize the seeds and establish themselves in the rhizosphere, reducing the impact of biotic stresses while fostering a healthier environment for plant growth. They are known to exhibit several mechanisms against pathogens and pests, like production of cell wall degrading enzymes, antibiosis, competition, induced systemic resistance, chelation of iron etc. Additionally, these microorganisms regulate phytohormone levels, further optimizing the physiological and metabolic characteristics of plants. This approach not only promotes robust plant growth but also enhances tolerance to deleterious bacteria, fungi, nematodes and arthropods, ensuring healthier crops. These interactions can further be well studied and expressed by using different omics approaches like metagenomics (of seed microbiome), proteomics, transcriptomics, metabolomics and differential gene expression. This review highlights the role and benefits of seed biopriming as a sustainable strategy to manage biotic stresses effectively, and the importance of omics for better understanding of complex processes during such interactions, contributing to resilient agricultural production systems and environmental sustainability.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).