Solar-driven defluorination via hydroxyl radical spillover for complete mineralization of organofluorine pollutants without fluoride byproducts.

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Zheng, Jing-Lan Zhang, Zhixin Zheng, Chujie Huang, Yi-Lin Xie, Xu-Bing Li, Wondu Dagnaw Fentahun, Tieyu Wang, Qing-Xiao Tong, Jing-Xin Jian
{"title":"Solar-driven defluorination via hydroxyl radical spillover for complete mineralization of organofluorine pollutants without fluoride byproducts.","authors":"Lei Zheng, Jing-Lan Zhang, Zhixin Zheng, Chujie Huang, Yi-Lin Xie, Xu-Bing Li, Wondu Dagnaw Fentahun, Tieyu Wang, Qing-Xiao Tong, Jing-Xin Jian","doi":"10.1038/s42004-025-01655-3","DOIUrl":null,"url":null,"abstract":"<p><p>The recalcitrance of fluorinated organic pollutants-featuring robust Csp²-F and Csp³-F bonds-poses critical challenges to aquatic ecosystems due to their extreme persistence and bioaccumulation. Whereas current destruction strategies suffer from high energy consumption and non-selective, here we present a solar-powered mineralization strategy utilizing cerium oxide/mesoporous silica (CeO<sub>2</sub>/mSiO<sub>2</sub>) heterojunction photocatalysts for complete defluorination of organofluorine contaminants, including fluorinated e-waste, fluoro-antibiotics and perfluorinated surfactant. Under visible light irradiation, the optimized 5%CeO<sub>2</sub>/mSiO<sub>2</sub> achieved 91.1 ± 3.2% octafluorobiphenyl (OFB) and 97.7 ± 2.8% fleroxacin (FLE) degradations within 6 h. Notably, the 'forever chemical' perfluorooctanesulfonic acid (PFOS) can be effectively destructed, achieving a maximum of 25.9 ± 2.7% reduction in 5 days under sunshine, outperforming parallel experiments conducted without a catalyst (~0%). This process notably avoids the evolution of fluoride ions. Theoretical calculations reveal that the removal of C-F bonds by photogenerated hydroxyl radical is thermodynamically superior to hydroxyl-mediated defluorination. This work establishes an energy-efficient paradigm for eradicating \"forever chemicals\" without secondary pollution, advancing sustainable water remediation technologies.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"249"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01655-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recalcitrance of fluorinated organic pollutants-featuring robust Csp²-F and Csp³-F bonds-poses critical challenges to aquatic ecosystems due to their extreme persistence and bioaccumulation. Whereas current destruction strategies suffer from high energy consumption and non-selective, here we present a solar-powered mineralization strategy utilizing cerium oxide/mesoporous silica (CeO2/mSiO2) heterojunction photocatalysts for complete defluorination of organofluorine contaminants, including fluorinated e-waste, fluoro-antibiotics and perfluorinated surfactant. Under visible light irradiation, the optimized 5%CeO2/mSiO2 achieved 91.1 ± 3.2% octafluorobiphenyl (OFB) and 97.7 ± 2.8% fleroxacin (FLE) degradations within 6 h. Notably, the 'forever chemical' perfluorooctanesulfonic acid (PFOS) can be effectively destructed, achieving a maximum of 25.9 ± 2.7% reduction in 5 days under sunshine, outperforming parallel experiments conducted without a catalyst (~0%). This process notably avoids the evolution of fluoride ions. Theoretical calculations reveal that the removal of C-F bonds by photogenerated hydroxyl radical is thermodynamically superior to hydroxyl-mediated defluorination. This work establishes an energy-efficient paradigm for eradicating "forever chemicals" without secondary pollution, advancing sustainable water remediation technologies.

通过氢氧自由基溢出实现有机氟污染物完全矿化的太阳能驱动除氟,无氟副产物。
氟化有机污染物的顽固性-具有强大的Csp²-F和Csp³-F键-由于其极端的持久性和生物积累,对水生生态系统构成了严峻的挑战。鉴于目前的破坏策略存在高能耗和非选择性的问题,本研究提出了一种利用氧化铈/介孔二氧化硅(CeO2/mSiO2)异质结光催化剂的太阳能矿化策略,用于有机氟污染物的完全脱氟,包括含氟电子垃圾、含氟抗生素和全氟表面活性剂。在可见光照射下,优化后的5%CeO2/mSiO2在6 h内对八氟联苯(OFB)的降解率为91.1±3.2%,氟罗沙星(FLE)的降解率为97.7±2.8%。值得注意的是,“永久化学”全氟辛烷磺酸(PFOS)可以有效地破坏,在阳光下5天内最多减少25.9±2.7%,优于无催化剂进行的平行实验(~0%)。这一过程明显避免了氟离子的演化。理论计算表明,光产生的羟基自由基对C-F键的去除在热力学上优于羟基介导的脱氟。这项工作为消除“永久化学品”而不产生二次污染建立了一个节能范例,推进了可持续的水修复技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信