Kyung Seok Kim , Darshan Chetty , Thomas Chouvenc , Joseph F. Velenovsky IV , Sang-Bin Lee , Seema Rana , Edward L. Vargo
{"title":"Transgressive gene expression disrupts the molting process in hybrids of two invasive termites","authors":"Kyung Seok Kim , Darshan Chetty , Thomas Chouvenc , Joseph F. Velenovsky IV , Sang-Bin Lee , Seema Rana , Edward L. Vargo","doi":"10.1016/j.ibmb.2025.104383","DOIUrl":null,"url":null,"abstract":"<div><div>The Formosan subterranean termite <em>(Coptotermes formosanus</em>) and the Asian subterranean termite (<em>Coptotermes gestroi</em>) are among the most destructive termite pests in the world. Both species have spread to various regions worldwide with overlapping distributions in a few areas where they can potentially hybridize. Observations suggest that workers in hybrid colonies are slower to molt than those of the parental species, suggesting a disruption in the molting process as a form of hybrid incompatibility. Our goal was to identify misexpressed genes in hybrids during the molting process to help uncover the molecular mechanisms underlying molting disruption. We conducted RNA-seq and identified molting-related genes by performing a time course analysis on differentially expressed transcripts. We identified molting-related genes during each stage of the molting cycle (pre-, post- and inter-molt) in the parental species. We then compared expression levels of these genes in the hybrids to identify genes that were transgressively expressed (either over- or under-expressed) compared to the parental species. We identified several genes related to the molting cycle, muscle contraction, response to stress, and ecdysone metabolism that were under-expressed in hybrids relative to their parents. These differences may help explain the disruption of molting in hybrids and provide insights into the effects of hybridization on misexpression of genes during critical periods of growth and development. Moreover, identification of molting related genes in subterranean termites highlights the molecular pathways involved in the molting process in this group of insects with high developmental plasticity.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"184 ","pages":"Article 104383"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174825001274","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Formosan subterranean termite (Coptotermes formosanus) and the Asian subterranean termite (Coptotermes gestroi) are among the most destructive termite pests in the world. Both species have spread to various regions worldwide with overlapping distributions in a few areas where they can potentially hybridize. Observations suggest that workers in hybrid colonies are slower to molt than those of the parental species, suggesting a disruption in the molting process as a form of hybrid incompatibility. Our goal was to identify misexpressed genes in hybrids during the molting process to help uncover the molecular mechanisms underlying molting disruption. We conducted RNA-seq and identified molting-related genes by performing a time course analysis on differentially expressed transcripts. We identified molting-related genes during each stage of the molting cycle (pre-, post- and inter-molt) in the parental species. We then compared expression levels of these genes in the hybrids to identify genes that were transgressively expressed (either over- or under-expressed) compared to the parental species. We identified several genes related to the molting cycle, muscle contraction, response to stress, and ecdysone metabolism that were under-expressed in hybrids relative to their parents. These differences may help explain the disruption of molting in hybrids and provide insights into the effects of hybridization on misexpression of genes during critical periods of growth and development. Moreover, identification of molting related genes in subterranean termites highlights the molecular pathways involved in the molting process in this group of insects with high developmental plasticity.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.