Optimizing Smart Grid Demand Response: A Stackelberg Game Framework for Priority-Aware Dynamic Pricing and Load Scheduling

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Syed Ashraf Ali, Sohail Imran Saeed, Sanaullah Ahmad, Muhammad Waqas, Syed Haider Ali, Dilawar Shah, Shujaat Ali, Muhammad Tahir
{"title":"Optimizing Smart Grid Demand Response: A Stackelberg Game Framework for Priority-Aware Dynamic Pricing and Load Scheduling","authors":"Syed Ashraf Ali,&nbsp;Sohail Imran Saeed,&nbsp;Sanaullah Ahmad,&nbsp;Muhammad Waqas,&nbsp;Syed Haider Ali,&nbsp;Dilawar Shah,&nbsp;Shujaat Ali,&nbsp;Muhammad Tahir","doi":"10.1002/eng2.70341","DOIUrl":null,"url":null,"abstract":"<p>Modern power systems face increasing complexity due to fluctuating demand and the intermittent nature of renewable energy sources. To address these challenges, this paper introduces a novel Stackelberg game-theoretic framework for intelligent demand response (DR) in smart grids. Our approach models hierarchical interaction between energy providers (leaders) and consumers (followers), incorporating priority-aware load scheduling and real-time feedback loops. Consumers are classified into priority and non-priority categories. A Markov chain-based behavior model captures stochastic user adaptation, enabling dynamic price adjustment. Simulations over 1, 7, and 30-day horizons in MATLAB demonstrate significant improvements: A 22% reduction in operational costs and a 15% decrease in peak-to-average ratio (PAR). The framework converges efficiently and ensures adherence to the grid capacity. These findings demonstrate the effectiveness of our adaptive and scalable solution. Unlike existing Stackelberg-based models, our approach uniquely integrates real-time feedback, priority-based user classification, and a stochastic Markov behavior model to enhance pricing responsiveness, grid reliability, and fairness across diverse consumer types.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70341","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern power systems face increasing complexity due to fluctuating demand and the intermittent nature of renewable energy sources. To address these challenges, this paper introduces a novel Stackelberg game-theoretic framework for intelligent demand response (DR) in smart grids. Our approach models hierarchical interaction between energy providers (leaders) and consumers (followers), incorporating priority-aware load scheduling and real-time feedback loops. Consumers are classified into priority and non-priority categories. A Markov chain-based behavior model captures stochastic user adaptation, enabling dynamic price adjustment. Simulations over 1, 7, and 30-day horizons in MATLAB demonstrate significant improvements: A 22% reduction in operational costs and a 15% decrease in peak-to-average ratio (PAR). The framework converges efficiently and ensures adherence to the grid capacity. These findings demonstrate the effectiveness of our adaptive and scalable solution. Unlike existing Stackelberg-based models, our approach uniquely integrates real-time feedback, priority-based user classification, and a stochastic Markov behavior model to enhance pricing responsiveness, grid reliability, and fairness across diverse consumer types.

Abstract Image

优化智能电网需求响应:优先级感知动态定价和负荷调度的Stackelberg博弈框架
由于需求的波动和可再生能源的间歇性,现代电力系统面临着越来越复杂的问题。为了解决这些挑战,本文引入了一种新的Stackelberg博弈论框架,用于智能电网中的智能需求响应(DR)。我们的方法模拟能源供应商(领导者)和消费者(追随者)之间的分层互动,结合优先级感知负载调度和实时反馈循环。消费者被分为优先级和非优先级两类。基于马尔可夫链的行为模型捕获随机用户适应,实现动态价格调整。在MATLAB中进行的1、7和30天的模拟显示了显著的改进:运营成本降低22%,峰值平均比(PAR)降低15%。该框架有效地收敛并确保遵守网格容量。这些发现证明了我们的自适应和可扩展解决方案的有效性。与现有的基于stackelberg的模型不同,我们的方法独特地集成了实时反馈、基于优先级的用户分类和随机马尔可夫行为模型,以提高不同消费者类型的定价响应能力、电网可靠性和公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信