{"title":"Review of Current Trends and Uses of Machine Learning for Discrete Acoustic Emission Interpretation","authors":"Maël Pénicaud, Florence Lequien, Clément Fisher, Arnaud Recoquillay","doi":"10.1007/s10921-025-01247-0","DOIUrl":null,"url":null,"abstract":"<div><p>Acoustic Emission (AE) is a well-established and recognised technique for monitoring the degradation of a variety of structures. It is used in a variety of applications, including fatigue monitoring, corrosion monitoring, or detection of pressure leaks. As sensors evolve and databases grow, analysis allows for a better interpretation and understanding of phenomena. Specifically, the usage of Machine Learning (ML) algorithms has proven to be a major tool for interpreting signals. This paper reviews the current usage of ML algorithms used in major Acoustic Emission applications to interpret damage mechanisms, exploring how ML allows the study of more complex phenomena and structures, discussing the conditions, precautions and limitations to its usage as well as future prospects and potentials.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-025-01247-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-025-01247-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic Emission (AE) is a well-established and recognised technique for monitoring the degradation of a variety of structures. It is used in a variety of applications, including fatigue monitoring, corrosion monitoring, or detection of pressure leaks. As sensors evolve and databases grow, analysis allows for a better interpretation and understanding of phenomena. Specifically, the usage of Machine Learning (ML) algorithms has proven to be a major tool for interpreting signals. This paper reviews the current usage of ML algorithms used in major Acoustic Emission applications to interpret damage mechanisms, exploring how ML allows the study of more complex phenomena and structures, discussing the conditions, precautions and limitations to its usage as well as future prospects and potentials.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.