{"title":"Assessing the global flux of organic carbon transported from terrestrial surfaces to oceans by rivers","authors":"Fei Chen, Xiaoyong Bai, Guangjie Luo, Guangying Zhang, Chen Ran, Xuling Luo","doi":"10.1186/s13021-025-00318-z","DOIUrl":null,"url":null,"abstract":"<div><p>The magnitude and distribution of organic carbon (OC) transport from the terrestrial surface to the oceans is not well understood on a global scale. This hinders our understanding of terrestrial and marine carbon cycles. In this study, we determined the characteristics of OC flux. Our results showed that approximately 420 Tg C/yr of OC are transported from the terrestrial surface to the oceans, including 220 Tg C/yr of particulate organic carbon (POC) and 200 Tg C/yr of dissolved organic carbon (DOC). Asia, with only 32.46% of the basin area, accounts for 57.65% of the total POC flux, while North America, with only 17.52% of the basin area, accounts for 37.51% of DOC flux. Of these, the Pacific receives 48% of the total POC flux, and the Atlantic receives 46% of the total DOC flux. Five key zones are diagnosed and identified, in which latitudes between 5° N and 20° S contributed 72.76% of the global OC flux. Such insights directly reveal global riverine OC flux, which helps us to comprehensively understand the terrestrial and marine carbon cycles.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-025-00318-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-025-00318-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The magnitude and distribution of organic carbon (OC) transport from the terrestrial surface to the oceans is not well understood on a global scale. This hinders our understanding of terrestrial and marine carbon cycles. In this study, we determined the characteristics of OC flux. Our results showed that approximately 420 Tg C/yr of OC are transported from the terrestrial surface to the oceans, including 220 Tg C/yr of particulate organic carbon (POC) and 200 Tg C/yr of dissolved organic carbon (DOC). Asia, with only 32.46% of the basin area, accounts for 57.65% of the total POC flux, while North America, with only 17.52% of the basin area, accounts for 37.51% of DOC flux. Of these, the Pacific receives 48% of the total POC flux, and the Atlantic receives 46% of the total DOC flux. Five key zones are diagnosed and identified, in which latitudes between 5° N and 20° S contributed 72.76% of the global OC flux. Such insights directly reveal global riverine OC flux, which helps us to comprehensively understand the terrestrial and marine carbon cycles.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.