Stepan Poluianov, Alexander Mishev, Olga Kryakunova, Botakoz Seifullina, Nikolay Nikolayevskiy, Ilya Usoskin
{"title":"Ground-Level Enhancement of 8 June 2024 (GLE 75) Caused by Solar Energetic Particles","authors":"Stepan Poluianov, Alexander Mishev, Olga Kryakunova, Botakoz Seifullina, Nikolay Nikolayevskiy, Ilya Usoskin","doi":"10.1007/s11207-025-02518-9","DOIUrl":null,"url":null,"abstract":"<div><p>Solar eruptive events such as flares and coronal mass ejections can accelerate charged particles up to nearly relativistic energies producing so-called solar energetic particles (SEPs). Some of those SEPs can propagate towards Earth and be registered by, e.g., particle detectors onboard satellites. Favourable acceleration conditions make strong SEP events possible with a high flux of high-energy (> 500 MeV) protons, which can be registered even on the ground by neutron monitors (NMs) as rapid enhancements of their count rate over the background. Such events are accordingly called ground-level enhancements (GLEs). GLEs are rare, with only 73 events registered from 1942 to 2023, and three more GLEs 74 – 76 occurred in 2024, close to the maximum of solar activity. In this work, we report GLE 75 that happened on 8 June 2024, initially missed during real-time monitoring, but identified retrospectively. The SEP event, which induced the GLE, was associated with a flare from the solar active region 13697 (13664 on the previous solar rotation). It caused statistically significant increases in the count rate of NMs Dome C, South Pole, and Peawanuck, as well as in the proton intensity measured by Geostationary Operational Environmental Satellite GOES-16. Here, we show the GLE in NM data, describe the procedure of evaluation of its statistical significance, and present the analysis with reconstruction of the spectral and angular SEP distributions.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-025-02518-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02518-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar eruptive events such as flares and coronal mass ejections can accelerate charged particles up to nearly relativistic energies producing so-called solar energetic particles (SEPs). Some of those SEPs can propagate towards Earth and be registered by, e.g., particle detectors onboard satellites. Favourable acceleration conditions make strong SEP events possible with a high flux of high-energy (> 500 MeV) protons, which can be registered even on the ground by neutron monitors (NMs) as rapid enhancements of their count rate over the background. Such events are accordingly called ground-level enhancements (GLEs). GLEs are rare, with only 73 events registered from 1942 to 2023, and three more GLEs 74 – 76 occurred in 2024, close to the maximum of solar activity. In this work, we report GLE 75 that happened on 8 June 2024, initially missed during real-time monitoring, but identified retrospectively. The SEP event, which induced the GLE, was associated with a flare from the solar active region 13697 (13664 on the previous solar rotation). It caused statistically significant increases in the count rate of NMs Dome C, South Pole, and Peawanuck, as well as in the proton intensity measured by Geostationary Operational Environmental Satellite GOES-16. Here, we show the GLE in NM data, describe the procedure of evaluation of its statistical significance, and present the analysis with reconstruction of the spectral and angular SEP distributions.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.