Training-free style transfer via content-style image inversion

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Songlin Lei , Qiuxia Yang , Ke Yang , Zhengpeng Zhao , Yuanyuan Pu
{"title":"Training-free style transfer via content-style image inversion","authors":"Songlin Lei ,&nbsp;Qiuxia Yang ,&nbsp;Ke Yang ,&nbsp;Zhengpeng Zhao ,&nbsp;Yuanyuan Pu","doi":"10.1016/j.cag.2025.104352","DOIUrl":null,"url":null,"abstract":"<div><div>Image style transfer aims to adapt a content image to a target style while preserving its structural information. Despite the strong generative capabilities of diffusion models, their application to style transfer faces two key challenges: (1) entangled content-style interplay during denoising, leading to suboptimal stylization, and (2) reliance on computationally expensive optimization (e.g., model fine-tuning or text inversion). To address these issues, we propose a training-free tri-path framework. The content and style paths separately leverage image inversion to extract content and style features, which are shared with the stylization path. Specifically, the content path preserves structure via residual connections and noised *h*-features, while the style path injects style through AdaIN-modulated self-attention features to avoid artifacts. Our method eliminates optimization overhead and ensures harmonious stylization by decoupling content-style control. Experiments demonstrate that our approach effectively retains content fidelity and style accuracy while minimizing artifacts.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104352"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325001931","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Image style transfer aims to adapt a content image to a target style while preserving its structural information. Despite the strong generative capabilities of diffusion models, their application to style transfer faces two key challenges: (1) entangled content-style interplay during denoising, leading to suboptimal stylization, and (2) reliance on computationally expensive optimization (e.g., model fine-tuning or text inversion). To address these issues, we propose a training-free tri-path framework. The content and style paths separately leverage image inversion to extract content and style features, which are shared with the stylization path. Specifically, the content path preserves structure via residual connections and noised *h*-features, while the style path injects style through AdaIN-modulated self-attention features to avoid artifacts. Our method eliminates optimization overhead and ensures harmonious stylization by decoupling content-style control. Experiments demonstrate that our approach effectively retains content fidelity and style accuracy while minimizing artifacts.

Abstract Image

通过内容样式图像反转的无训练风格迁移
图像样式转移的目的是使内容图像适应目标样式,同时保留其结构信息。尽管扩散模型具有强大的生成能力,但其在风格迁移中的应用面临两个关键挑战:(1)在去噪过程中纠缠的内容-风格相互作用,导致次优风格化;(2)依赖于计算代价高昂的优化(例如,模型微调或文本反转)。为了解决这些问题,我们提出了一个无需培训的三路径框架。内容和样式路径分别利用图像反转来提取与样式化路径共享的内容和样式特征。具体来说,内容路径通过残余连接和带噪声的*h*特征来保持结构,而样式路径通过adain调制的自关注特征注入样式以避免工件。我们的方法消除了优化开销,并通过解耦内容样式控制来确保和谐的样式化。实验表明,我们的方法有效地保留了内容保真度和风格准确性,同时最大限度地减少了工件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信