{"title":"A cooperative jamming mode adjustment method based on Multi-Agent reinforcement learning","authors":"Jieling Wang, Yanfei Liu, Chao Li, Dongdong Yang, Qingshan Yin","doi":"10.1016/j.asej.2025.103672","DOIUrl":null,"url":null,"abstract":"<div><div>With the advancement of multifunctional netted radar systems (NRS), traditional jamming decision-making strategies struggle to adapt to the nonlinear challenges of dynamic electromagnetic countermeasures environments, particularly against multifunctional NRS. To address this, we propose a Multi-agent Joint Collaborative Jamming Adjustment Method (MJCJMA). Firstly, a non-cooperative adversarial scenario model is constructed, employing an improved snow melting algorithm (GPSAO-LSSVM) for radar threat pre-evaluation. And a threat quantification model is developed using enhanced entropy weighting (IEWM) and improved TOPSIS (ITOPSIS). Then, a multi-agent reinforcement learning algorithm is designed, integrating prioritized experience replay, entropy regularization, and reward centering to improve efficiency and stability. Furthermore, an alternating training strategy is proposed, which significantly accelerates the convergence process. Extensive simulation results validate the superiority of MJCJMA, which significantly reducing radar detection probability (96.25% vs. baseline, 47.51% vs. non-alternating training) and threat levels, thereby enabling intelligent jamming decisions in adversarial scenarios.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 11","pages":"Article 103672"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925004137","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of multifunctional netted radar systems (NRS), traditional jamming decision-making strategies struggle to adapt to the nonlinear challenges of dynamic electromagnetic countermeasures environments, particularly against multifunctional NRS. To address this, we propose a Multi-agent Joint Collaborative Jamming Adjustment Method (MJCJMA). Firstly, a non-cooperative adversarial scenario model is constructed, employing an improved snow melting algorithm (GPSAO-LSSVM) for radar threat pre-evaluation. And a threat quantification model is developed using enhanced entropy weighting (IEWM) and improved TOPSIS (ITOPSIS). Then, a multi-agent reinforcement learning algorithm is designed, integrating prioritized experience replay, entropy regularization, and reward centering to improve efficiency and stability. Furthermore, an alternating training strategy is proposed, which significantly accelerates the convergence process. Extensive simulation results validate the superiority of MJCJMA, which significantly reducing radar detection probability (96.25% vs. baseline, 47.51% vs. non-alternating training) and threat levels, thereby enabling intelligent jamming decisions in adversarial scenarios.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.