{"title":"Weighted Lp → Lq-boundedness of commutators and paraproducts in the Bloom setting","authors":"Timo S. Hänninen , Emiel Lorist , Jaakko Sinko","doi":"10.1016/j.matpur.2025.103772","DOIUrl":null,"url":null,"abstract":"<div><div>As our main result, we supply the missing characterization of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> boundedness of the commutator of a non-degenerate Calderón–Zygmund operator <em>T</em> and pointwise multiplication by <em>b</em> for exponents <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and Muckenhoupt weights <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Namely, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> is bounded if and only if <em>b</em> satisfies the following new, cancellative condition:<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>ν</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi></math></span> is the weighted sharp maximal function defined by<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>Q</mi></mrow></munder><mo></mo><mfrac><mrow><msub><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></msub></mrow><mrow><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Q</mi></mrow></munder><mo>|</mo><mi>b</mi><mo>−</mo><msub><mrow><mo>〈</mo><mi>b</mi><mo>〉</mo></mrow><mrow><mi>Q</mi></mrow></msub><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></math></span></span></span> and <em>ν</em> is the Bloom weight defined by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><msup><mrow><mi>λ</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup></math></span>.</div><div>In the unweighted case <span><math><mi>μ</mi><mo>=</mo><mi>λ</mi><mo>=</mo><mn>1</mn></math></span>, by a result of Hytönen the boundedness of the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo></math></span> is, after factoring out constants, characterized by the boundedness of pointwise multiplication by <em>b</em>, which amounts to the non-cancellative condition <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup></math></span>. We provide a counterexample showing that this characterization breaks down in the weighted case <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Therefore, the introduction of our new, cancellative condition is necessary.</div><div>In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> in the missing exponent range <span><math><mi>p</mi><mo>≠</mo><mi>q</mi></math></span>. Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103772"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001163","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
As our main result, we supply the missing characterization of the boundedness of the commutator of a non-degenerate Calderón–Zygmund operator T and pointwise multiplication by b for exponents and Muckenhoupt weights and . Namely, the commutator is bounded if and only if b satisfies the following new, cancellative condition: where is the weighted sharp maximal function defined by and ν is the Bloom weight defined by .
In the unweighted case , by a result of Hytönen the boundedness of the commutator is, after factoring out constants, characterized by the boundedness of pointwise multiplication by b, which amounts to the non-cancellative condition . We provide a counterexample showing that this characterization breaks down in the weighted case and . Therefore, the introduction of our new, cancellative condition is necessary.
In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts in the missing exponent range . Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.