Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection

IF 6.9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
J. Pérez-Aracil , C. Peláez-Rodríguez , Ronan McAdam , Antonello Squintu , Cosmin M. Marina , Eugenio Lorente-Ramos , Niklas Luther , Verónica Torralba , Enrico Scoccimarro , Leone Cavicchia , Matteo Giuliani , Eduardo Zorita , Felicitas Hansen , David Barriopedro , Ricardo García-Herrera , Pedro A. Gutiérrez , Jürg Luterbacher , Elena Xoplaki , Andrea Castelletti , S. Salcedo-Sanz
{"title":"Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection","authors":"J. Pérez-Aracil ,&nbsp;C. Peláez-Rodríguez ,&nbsp;Ronan McAdam ,&nbsp;Antonello Squintu ,&nbsp;Cosmin M. Marina ,&nbsp;Eugenio Lorente-Ramos ,&nbsp;Niklas Luther ,&nbsp;Verónica Torralba ,&nbsp;Enrico Scoccimarro ,&nbsp;Leone Cavicchia ,&nbsp;Matteo Giuliani ,&nbsp;Eduardo Zorita ,&nbsp;Felicitas Hansen ,&nbsp;David Barriopedro ,&nbsp;Ricardo García-Herrera ,&nbsp;Pedro A. Gutiérrez ,&nbsp;Jürg Luterbacher ,&nbsp;Elena Xoplaki ,&nbsp;Andrea Castelletti ,&nbsp;S. Salcedo-Sanz","doi":"10.1016/j.wace.2025.100792","DOIUrl":null,"url":null,"abstract":"<div><div>Heatwaves (HWs) are extreme atmospheric events that produce significant societal and environmental impacts. Predicting these extreme events remains challenging, as their complex interactions with large-scale atmospheric and climatic variables are difficult to capture with traditional statistical and dynamical models. This work presents a general method for driver identification in extreme climate events. A novel framework named Spatio-Temporal Cluster-Optimized Feature Selection (STCO-FS) is proposed to identify key immediate (short-term) HW drivers by combining clustering algorithms with an ensemble evolutionary algorithm. The framework analyzes spatio-temporal data, reduces dimensionality by grouping similar geographical grid cells for each variable, and develops driver selection in spatial and temporal domains, identifying the best time lags between predictive variables and HW occurrences. The proposed method has been applied to analyze HWs in the Adda river basin in Italy. The approach effectively identifies significant variables influencing HWs in this region. This research can potentially enhance our understanding of HW drivers and predictability.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"49 ","pages":"Article 100792"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094725000507","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heatwaves (HWs) are extreme atmospheric events that produce significant societal and environmental impacts. Predicting these extreme events remains challenging, as their complex interactions with large-scale atmospheric and climatic variables are difficult to capture with traditional statistical and dynamical models. This work presents a general method for driver identification in extreme climate events. A novel framework named Spatio-Temporal Cluster-Optimized Feature Selection (STCO-FS) is proposed to identify key immediate (short-term) HW drivers by combining clustering algorithms with an ensemble evolutionary algorithm. The framework analyzes spatio-temporal data, reduces dimensionality by grouping similar geographical grid cells for each variable, and develops driver selection in spatial and temporal domains, identifying the best time lags between predictive variables and HW occurrences. The proposed method has been applied to analyze HWs in the Adda river basin in Italy. The approach effectively identifies significant variables influencing HWs in this region. This research can potentially enhance our understanding of HW drivers and predictability.

Abstract Image

识别热浪的关键驱动因素:极端事件检测的新时空框架
热浪是产生重大社会和环境影响的极端大气事件。预测这些极端事件仍然具有挑战性,因为它们与大尺度大气和气候变量的复杂相互作用难以用传统的统计和动力学模型捕捉。这项工作提出了极端气候事件中驾驶员识别的一般方法。提出了一种时空聚类优化特征选择框架(STCO-FS),将聚类算法与集成进化算法相结合,识别关键的即时(短期)HW驱动因素。该框架分析时空数据,通过为每个变量分组相似的地理网格单元来降低维度,并在空间和时间域中开发驾驶员选择,确定预测变量与HW发生之间的最佳时间滞后。该方法已应用于意大利阿达河流域的HWs分析。该方法有效地识别了影响该地区HWs的重要变量。这项研究可能会增强我们对人力资源驱动因素和可预测性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Weather and Climate Extremes
Weather and Climate Extremes Earth and Planetary Sciences-Atmospheric Science
CiteScore
11.00
自引率
7.50%
发文量
102
审稿时长
33 weeks
期刊介绍: Weather and Climate Extremes Target Audience: Academics Decision makers International development agencies Non-governmental organizations (NGOs) Civil society Focus Areas: Research in weather and climate extremes Monitoring and early warning systems Assessment of vulnerability and impacts Developing and implementing intervention policies Effective risk management and adaptation practices Engagement of local communities in adopting coping strategies Information and communication strategies tailored to local and regional needs and circumstances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信