Naima Hamid , Marriya Sultan , Muhammad Junaid , Stuart Cairns , Iain Robertson , Houda Javed , De-Sheng Pei
{"title":"Interactions between micro(nano)plastics and natural organic matter: implications for toxicity mitigation in aquatic species","authors":"Naima Hamid , Marriya Sultan , Muhammad Junaid , Stuart Cairns , Iain Robertson , Houda Javed , De-Sheng Pei","doi":"10.1016/j.aquatox.2025.107541","DOIUrl":null,"url":null,"abstract":"<div><div>Plastics have significantly contributed to modern conveniences owing to their ease of use, stability, and adaptability. However, the fragmentation of plastics into microplastics (MPs) and nanoplastics (NPs) poses significant environmental risks. These micro(nano)plastics (MNPs) can adsorb various pollutants and pathogens, potentially posing significant ecological risks. This review critically examines the natural organic matter (NOM) in mitigating the toxicity of MNPs in both marine and freshwater species. Evidence suggests that NOM facilitates the formation of an eco-corona (EC) on MNPs, thereby reducing toxicity. Reduced toxicity attributed to EC formation has been observed in various freshwater species, such as <em>Danio rerio</em> and <em>Daphnia magna</em>, as well as marine species, including sea urchins, European sea bass, and marine algae. The presence of natural organic matter (NOM), particularly fulvic acid (FA) and humic acid (HA), significantly mitigates the toxic effects of MNPs, with HA exhibiting a strong protective effect. The interactions between MNPs and NOM, including the formation of the EC, which encompasses a protein corona component, are pivotal in understanding toxicity mitigation in aquatic environments. This review highlights the need for further research to elucidate the interactions between MNPs and NOM, and their role in mitigating toxicity across marine and freshwater ecosystems.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"287 ","pages":"Article 107541"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25003054","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plastics have significantly contributed to modern conveniences owing to their ease of use, stability, and adaptability. However, the fragmentation of plastics into microplastics (MPs) and nanoplastics (NPs) poses significant environmental risks. These micro(nano)plastics (MNPs) can adsorb various pollutants and pathogens, potentially posing significant ecological risks. This review critically examines the natural organic matter (NOM) in mitigating the toxicity of MNPs in both marine and freshwater species. Evidence suggests that NOM facilitates the formation of an eco-corona (EC) on MNPs, thereby reducing toxicity. Reduced toxicity attributed to EC formation has been observed in various freshwater species, such as Danio rerio and Daphnia magna, as well as marine species, including sea urchins, European sea bass, and marine algae. The presence of natural organic matter (NOM), particularly fulvic acid (FA) and humic acid (HA), significantly mitigates the toxic effects of MNPs, with HA exhibiting a strong protective effect. The interactions between MNPs and NOM, including the formation of the EC, which encompasses a protein corona component, are pivotal in understanding toxicity mitigation in aquatic environments. This review highlights the need for further research to elucidate the interactions between MNPs and NOM, and their role in mitigating toxicity across marine and freshwater ecosystems.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.