Dominik Gendreizig , Christina Elsner , Svetlana Kucher , Gunnar Jeschke , Alistair J. Fielding , Enrica Bordignon
{"title":"Specificity and reactivity of bromoacrylaldehyde spin labels","authors":"Dominik Gendreizig , Christina Elsner , Svetlana Kucher , Gunnar Jeschke , Alistair J. Fielding , Enrica Bordignon","doi":"10.1016/j.jmr.2025.107953","DOIUrl":null,"url":null,"abstract":"<div><div>Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labelling provides information on structure and dynamics of biomolecules. Increasing the availability of spin labels with different properties is an elegant way to foster a more accurate analysis of the EPR data in relation to the biological problem investigated. In this study, we present a comparative investigation of labelling efficiency, surface accessibility, site specificity and width of the distance distributions obtained on two proteins with the nitroxide-based bromoacrylaldehyde spin label (BASL) versus the two commercial spin labels MTSL (methanethiosulfonate spin label) and MAP (maleimido proxyl). Based on the predicted distances from a rotamer library approach and on the experimental distance distributions, BASL is shown to provide generally narrower distance distributions compared to the other nitroxide labels. The exquisite surface specificity of BASL with respect to MAP could be successfully exploited to selectively label surface cysteines in proteins containing a high number of native cysteines. In addition, the distinct site-reactivity of BASL and MAP towards two surface-exposed cysteines was leveraged for orthogonal labelling strategies with nitroxide and gadolinium labels.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"380 ","pages":"Article 107953"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725001259","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labelling provides information on structure and dynamics of biomolecules. Increasing the availability of spin labels with different properties is an elegant way to foster a more accurate analysis of the EPR data in relation to the biological problem investigated. In this study, we present a comparative investigation of labelling efficiency, surface accessibility, site specificity and width of the distance distributions obtained on two proteins with the nitroxide-based bromoacrylaldehyde spin label (BASL) versus the two commercial spin labels MTSL (methanethiosulfonate spin label) and MAP (maleimido proxyl). Based on the predicted distances from a rotamer library approach and on the experimental distance distributions, BASL is shown to provide generally narrower distance distributions compared to the other nitroxide labels. The exquisite surface specificity of BASL with respect to MAP could be successfully exploited to selectively label surface cysteines in proteins containing a high number of native cysteines. In addition, the distinct site-reactivity of BASL and MAP towards two surface-exposed cysteines was leveraged for orthogonal labelling strategies with nitroxide and gadolinium labels.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.