DM-SegNet: Dual-Mamba architecture for 3D medical image segmentation with global context modeling

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Chengzhang Zhu , Hangyu Ji , Hanzhen Liu , Shuhan Tang , Xiaokuan Kang , Yalong Xiao
{"title":"DM-SegNet: Dual-Mamba architecture for 3D medical image segmentation with global context modeling","authors":"Chengzhang Zhu ,&nbsp;Hangyu Ji ,&nbsp;Hanzhen Liu ,&nbsp;Shuhan Tang ,&nbsp;Xiaokuan Kang ,&nbsp;Yalong Xiao","doi":"10.1016/j.cag.2025.104334","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate 3D medical image segmentation demands architectures capable of reconciling global context modeling with spatial topology preservation. While State Space Models (SSMs) like Mamba show potential for sequence modeling, existing medical SSMs suffer from encoder–decoder incompatibility: the encoder’s 1D sequence flattening compromises spatial structures, while conventional decoders fail to leverage Mamba’s state propagation. We present DM-SegNet, a Dual-Mamba architecture integrating directional state transitions with anatomy-aware hierarchical decoding. The core innovations include a quadri-directional spatial Mamba module employing four-directional 3D scanning to maintain anatomical spatial coherence, a gated spatial convolution layer that enhances spatially sensitive feature representation prior to state modeling, and a Mamba-driven decoding framework enabling bidirectional state synchronization across scales. Extensive evaluation on two clinically significant benchmarks demonstrates the efficacy of DM-SegNet: achieving state-of-the-art Dice Similarity Coefficient (DSC) of 85.44% on the Synapse dataset for abdominal organ segmentation and 90.22% on the BraTS2023 dataset for brain tumor segmentation.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104334"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784932500175X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate 3D medical image segmentation demands architectures capable of reconciling global context modeling with spatial topology preservation. While State Space Models (SSMs) like Mamba show potential for sequence modeling, existing medical SSMs suffer from encoder–decoder incompatibility: the encoder’s 1D sequence flattening compromises spatial structures, while conventional decoders fail to leverage Mamba’s state propagation. We present DM-SegNet, a Dual-Mamba architecture integrating directional state transitions with anatomy-aware hierarchical decoding. The core innovations include a quadri-directional spatial Mamba module employing four-directional 3D scanning to maintain anatomical spatial coherence, a gated spatial convolution layer that enhances spatially sensitive feature representation prior to state modeling, and a Mamba-driven decoding framework enabling bidirectional state synchronization across scales. Extensive evaluation on two clinically significant benchmarks demonstrates the efficacy of DM-SegNet: achieving state-of-the-art Dice Similarity Coefficient (DSC) of 85.44% on the Synapse dataset for abdominal organ segmentation and 90.22% on the BraTS2023 dataset for brain tumor segmentation.

Abstract Image

DM-SegNet:用于具有全局上下文建模的3D医学图像分割的双曼巴架构
准确的三维医学图像分割需要能够协调全局上下文建模和空间拓扑保存的架构。虽然像Mamba这样的状态空间模型(ssm)显示了序列建模的潜力,但现有的医疗ssm存在编码器-解码器不兼容的问题:编码器的一维序列平坦化损害了空间结构,而传统的解码器无法利用Mamba的状态传播。我们提出DM-SegNet,一种双曼巴架构,集成了定向状态转换和解剖感知分层解码。核心创新包括一个四向空间曼巴模块,采用四向3D扫描来保持解剖空间一致性,一个门控空间卷积层,在状态建模之前增强空间敏感特征表示,以及一个曼巴驱动的解码框架,实现跨尺度的双向状态同步。对两个具有临床意义的基准进行了广泛的评估,证明了DM-SegNet的有效性:在Synapse数据集上实现了最先进的Dice Similarity Coefficient (DSC),用于腹部器官分割为85.44%,在BraTS2023数据集上实现了90.22%的脑肿瘤分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信