{"title":"The analysis of fraud detection in financial market under machine learning.","authors":"Jing Jin, Yongqing Zhang","doi":"10.1038/s41598-025-15783-2","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of the global financial market, the problem of financial fraud is becoming more and more serious, which brings huge economic losses to the market, consumers and investors and threatens the stability of the financial system. Traditional fraud detection methods based on rules and statistical analysis are difficult to deal with increasingly complex and evolving fraud methods, and there are problems such as poor adaptability and high false alarm rate. Therefore, this paper proposes a financial fraud detection model based on Stacking ensemble learning algorithm, which integrates many basic learners such as logical regression (LR), decision tree (DT), random forest (RF), Gradient Boosting Tree (GBT), support vector machine (SVM) and neural network (NN), and introduces feature importance weighting and dynamic weight adjustment mechanism to improve the model performance. The experiment is based on more than 1 million real financial transaction data. The results show that the Stacking model is significantly superior to the traditional single model in accuracy (95%), recall (93%) and F1 score (94%), and has stronger generalization ability and stability. Although the Stacking model has challenges in computing cost and delay, its advantages in fraud detection accuracy and robustness make it a powerful tool for financial institutions to improve their risk control ability. In the future, its real-time adaptability can be further optimized through online learning and incremental update mechanism.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29959"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-15783-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the global financial market, the problem of financial fraud is becoming more and more serious, which brings huge economic losses to the market, consumers and investors and threatens the stability of the financial system. Traditional fraud detection methods based on rules and statistical analysis are difficult to deal with increasingly complex and evolving fraud methods, and there are problems such as poor adaptability and high false alarm rate. Therefore, this paper proposes a financial fraud detection model based on Stacking ensemble learning algorithm, which integrates many basic learners such as logical regression (LR), decision tree (DT), random forest (RF), Gradient Boosting Tree (GBT), support vector machine (SVM) and neural network (NN), and introduces feature importance weighting and dynamic weight adjustment mechanism to improve the model performance. The experiment is based on more than 1 million real financial transaction data. The results show that the Stacking model is significantly superior to the traditional single model in accuracy (95%), recall (93%) and F1 score (94%), and has stronger generalization ability and stability. Although the Stacking model has challenges in computing cost and delay, its advantages in fraud detection accuracy and robustness make it a powerful tool for financial institutions to improve their risk control ability. In the future, its real-time adaptability can be further optimized through online learning and incremental update mechanism.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.