Peng-Ming Zeng, Xin-Yao Sun, Yang Li, Wen-di Wu, Jing Huang, Dong-Dong Cao, Pin-Jue Qian, Xiang-Chun Ju, Zhen-Ge Luo
{"title":"Thymosin beta 4 as an Alzheimer disease intervention target identified using human brain organoids.","authors":"Peng-Ming Zeng, Xin-Yao Sun, Yang Li, Wen-di Wu, Jing Huang, Dong-Dong Cao, Pin-Jue Qian, Xiang-Chun Ju, Zhen-Ge Luo","doi":"10.1016/j.stemcr.2025.102601","DOIUrl":null,"url":null,"abstract":"<p><p>The developmental origin of Alzheimer disease (AD) has been proposed but is arguably debated. Here, we developed cerebral organoids from induced pluripotent stem cells (iPSCs) with mutations in amyloid precursor protein (APP) associated with familial AD (fAD) and analyzed the dynamic changes of cellular states. We found that mature neurons induced in fAD organoids markedly decreased compared to that of health control, accompanied with increased cell senescence and β-amyloid (Aβ) production. Interestingly, the expression level of the gene TMSB4X that encodes thymosin beta 4 (Tβ4) significantly decreased both in fAD organoids' neurons and AD patients' excitatory neurons. Remarkably, the neurodevelopmental deficits and Aβ formation in fAD organoids were rescued by treatment with Tβ4. The beneficial effects of Tβ4 were also revealed in 5xfAD model mice. Thus, this study has identified Tβ4 as a neuroprotective factor that may mitigate altered neurogenesis and AD pathology, highlighting a potential for disease intervention.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102601"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102601","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The developmental origin of Alzheimer disease (AD) has been proposed but is arguably debated. Here, we developed cerebral organoids from induced pluripotent stem cells (iPSCs) with mutations in amyloid precursor protein (APP) associated with familial AD (fAD) and analyzed the dynamic changes of cellular states. We found that mature neurons induced in fAD organoids markedly decreased compared to that of health control, accompanied with increased cell senescence and β-amyloid (Aβ) production. Interestingly, the expression level of the gene TMSB4X that encodes thymosin beta 4 (Tβ4) significantly decreased both in fAD organoids' neurons and AD patients' excitatory neurons. Remarkably, the neurodevelopmental deficits and Aβ formation in fAD organoids were rescued by treatment with Tβ4. The beneficial effects of Tβ4 were also revealed in 5xfAD model mice. Thus, this study has identified Tβ4 as a neuroprotective factor that may mitigate altered neurogenesis and AD pathology, highlighting a potential for disease intervention.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.