A Novel Approach for Dengue Outbreak Prediction Using Evolutionary Sampling with Prediction Framework.

IF 1.2 4区 医学 Q4 INFECTIOUS DISEASES
D Betteena Sheryl Fernando, K Sheela Sobana Rani
{"title":"A Novel Approach for Dengue Outbreak Prediction Using Evolutionary Sampling with Prediction Framework.","authors":"D Betteena Sheryl Fernando, K Sheela Sobana Rani","doi":"10.4103/jvbd.jvbd_62_25","DOIUrl":null,"url":null,"abstract":"<p><strong>Background objectives: </strong>The increasing prevalence of life-threatening viral diseases like dengue fever necessitates comprehensive research into their causes, recovery, and preventive measures. Dengue outbreak data often suffers from irregularities, underreporting, delays, and missing information, which challenge the development of reliable prediction models.</p><p><strong>Methods: </strong>To overcome these issues, the study proposes an innovative framework that combines Evolutionary Sampling with Prediction (ESP) to handle temporal and stochastic dynamics, along with a Minimax K-nearest neighbour imputer to correct missing data biases. Additionally, a novel Firefly Dynamic Evolution (FDE) approach optimizes model parameters, while a Random Forest classifier captures complex, nonlinear relationships in the data. The model was evaluated using 10-fold cross-validation on two datasets: the Local Epidemics Dengue Fever dataset (San Juan and Iquitos) and the Brazil dengue dataset.</p><p><strong>Results: </strong>The proposed model achieved a low Mean Absolute Error (MAE) of 22.1 and Root Mean Squared Error (RMSE) of 46.37 on the local dataset, and an MAE of 48.36 and RMSE of 86.76 on the Brazil dataset, demonstrating improved accuracy and robustness.</p><p><strong>Interpretation conclusion: </strong>These findings highlight the model's potential for early warning systems and broader applications in forecasting other infectious diseases.</p>","PeriodicalId":17660,"journal":{"name":"Journal of Vector Borne Diseases","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vector Borne Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/jvbd.jvbd_62_25","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background objectives: The increasing prevalence of life-threatening viral diseases like dengue fever necessitates comprehensive research into their causes, recovery, and preventive measures. Dengue outbreak data often suffers from irregularities, underreporting, delays, and missing information, which challenge the development of reliable prediction models.

Methods: To overcome these issues, the study proposes an innovative framework that combines Evolutionary Sampling with Prediction (ESP) to handle temporal and stochastic dynamics, along with a Minimax K-nearest neighbour imputer to correct missing data biases. Additionally, a novel Firefly Dynamic Evolution (FDE) approach optimizes model parameters, while a Random Forest classifier captures complex, nonlinear relationships in the data. The model was evaluated using 10-fold cross-validation on two datasets: the Local Epidemics Dengue Fever dataset (San Juan and Iquitos) and the Brazil dengue dataset.

Results: The proposed model achieved a low Mean Absolute Error (MAE) of 22.1 and Root Mean Squared Error (RMSE) of 46.37 on the local dataset, and an MAE of 48.36 and RMSE of 86.76 on the Brazil dataset, demonstrating improved accuracy and robustness.

Interpretation conclusion: These findings highlight the model's potential for early warning systems and broader applications in forecasting other infectious diseases.

基于进化抽样预测框架的登革热疫情预测新方法
背景目标:威胁生命的病毒性疾病如登革热日益流行,需要对其病因、康复和预防措施进行全面研究。登革热暴发数据经常存在不规范、少报、延迟和信息缺失的问题,这对建立可靠的预测模型提出了挑战。方法:为了克服这些问题,本研究提出了一个创新的框架,该框架结合了进化抽样和预测(ESP)来处理时间和随机动力学,以及一个最小最大k近邻输入器来纠正缺失的数据偏差。此外,一种新颖的萤火虫动态进化(FDE)方法优化了模型参数,而随机森林分类器捕获了数据中复杂的非线性关系。对两个数据集(当地流行登革热数据集(圣胡安和伊基托斯)和巴西登革热数据集)使用10倍交叉验证对该模型进行了评估。结果:该模型在本地数据集上的平均绝对误差(MAE)为22.1,均方根误差(RMSE)为46.37,在巴西数据集上的平均绝对误差(MAE)为48.36,均方根误差(RMSE)为86.76,显示出更高的准确性和鲁棒性。解释结论:这些发现突出了该模型在早期预警系统和更广泛应用于预测其他传染病方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vector Borne Diseases
Journal of Vector Borne Diseases INFECTIOUS DISEASES-PARASITOLOGY
CiteScore
0.90
自引率
0.00%
发文量
89
审稿时长
>12 weeks
期刊介绍: National Institute of Malaria Research on behalf of Indian Council of Medical Research (ICMR) publishes the Journal of Vector Borne Diseases. This Journal was earlier published as the Indian Journal of Malariology, a peer reviewed and open access biomedical journal in the field of vector borne diseases. The Journal publishes review articles, original research articles, short research communications, case reports of prime importance, letters to the editor in the field of vector borne diseases and their control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信