Joud Mulla, Alyssa Gregory, Hong Liao, Bashar Al Matour, Yuzhen Li, Abiha Abdullah, Timothy R Billiar, Melanie J Scott
{"title":"Caspase-11 regulates systemic inflammation and cell death in a cell-specific manner after trauma with shock.","authors":"Joud Mulla, Alyssa Gregory, Hong Liao, Bashar Al Matour, Yuzhen Li, Abiha Abdullah, Timothy R Billiar, Melanie J Scott","doi":"10.1093/jleuko/qiaf121","DOIUrl":null,"url":null,"abstract":"<p><p>Severe trauma releases damage-associated molecular patterns (DAMPs), which activate the immune system via pattern recognition receptors. This triggers inflammatory cascades that can lead to systemic inflammatory response syndrome, immunosuppression, and multiple organ dysfunction syndrome. Pyroptosis is an inflammatory form of cell death mediated by caspase-11 and gasdermin D (GsdmD). In this study, we examined caspase-11's effects on inflammation, tissue damage, and neutrophil infiltration in a model of severe tissue injury. Male C57BL/6J (WT), caspase-11-/-, cell-specific caspase-11-/- mice (endothelial-specific caspase-11-/- [casp11EC-/-]), platelet-specific caspase-11-/- (casp11plt-/-), and hepatocyte-specific caspase-11-/- (casp11HC-/-) mice were subjected to polytrauma, consisting of hemorrhagic shock (25% total blood volume removed), liver crush, and bilateral lower extremity injury. At 6 h post-polytrauma, blood, plasma, and tissues were collected for analysis. Western blot analysis showed caspase-11 and GsdmD cleavage in the lungs and liver in WT mice at 6 h after polytrauma. GsdmD cleavage was found to be caspase-11 dependent. Inflammatory mediators, plasma IL-6 and CXCL-1/KC, were significantly increased in caspase-11-/-, casp11HC-/- and casp11EC-/- mice compared to WT controls or casp11plt-/-. Liver damage (ALT/AST) was similar between groups. Circulating neutrophil counts were decreased in caspase-11-/-, but neutrophils and neutrophil myeloperoxidase levels were increased in caspase-11-/- liver compared with WT after polytrauma. Our study identifies an unexpected and novel anti-inflammatory function for caspase-11 in trauma, through the regulation of neutrophil influx into tissues. Our findings underscore the significance of caspase-11 activation early after polytrauma to moderate trauma-induced inflammation.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiaf121","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe trauma releases damage-associated molecular patterns (DAMPs), which activate the immune system via pattern recognition receptors. This triggers inflammatory cascades that can lead to systemic inflammatory response syndrome, immunosuppression, and multiple organ dysfunction syndrome. Pyroptosis is an inflammatory form of cell death mediated by caspase-11 and gasdermin D (GsdmD). In this study, we examined caspase-11's effects on inflammation, tissue damage, and neutrophil infiltration in a model of severe tissue injury. Male C57BL/6J (WT), caspase-11-/-, cell-specific caspase-11-/- mice (endothelial-specific caspase-11-/- [casp11EC-/-]), platelet-specific caspase-11-/- (casp11plt-/-), and hepatocyte-specific caspase-11-/- (casp11HC-/-) mice were subjected to polytrauma, consisting of hemorrhagic shock (25% total blood volume removed), liver crush, and bilateral lower extremity injury. At 6 h post-polytrauma, blood, plasma, and tissues were collected for analysis. Western blot analysis showed caspase-11 and GsdmD cleavage in the lungs and liver in WT mice at 6 h after polytrauma. GsdmD cleavage was found to be caspase-11 dependent. Inflammatory mediators, plasma IL-6 and CXCL-1/KC, were significantly increased in caspase-11-/-, casp11HC-/- and casp11EC-/- mice compared to WT controls or casp11plt-/-. Liver damage (ALT/AST) was similar between groups. Circulating neutrophil counts were decreased in caspase-11-/-, but neutrophils and neutrophil myeloperoxidase levels were increased in caspase-11-/- liver compared with WT after polytrauma. Our study identifies an unexpected and novel anti-inflammatory function for caspase-11 in trauma, through the regulation of neutrophil influx into tissues. Our findings underscore the significance of caspase-11 activation early after polytrauma to moderate trauma-induced inflammation.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.