Banaz Star-Shirko, Gladys Maria Pangga, Aaron McKenna, Nicolae Corcionivoschi, Anne Richmond, Umer Zeeshan Ijaz, Ozan Gundogdu
{"title":"Investigating microbial population structure and function in the chicken caeca and large intestine over time using metagenomics.","authors":"Banaz Star-Shirko, Gladys Maria Pangga, Aaron McKenna, Nicolae Corcionivoschi, Anne Richmond, Umer Zeeshan Ijaz, Ozan Gundogdu","doi":"10.1186/s13104-025-07441-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Although taxonomic variations in chicken gut microbiota have been previously documented, their functional capacity remain poorly understood. To gain a better understanding, we incorporated whole genome shotgun metagenomics to analyse microbial communities of two different organs: the caeca and the large intestine.</p><p><strong>Results: </strong>Using 24 samples obtained from the caeca and the large intestine of commercial chickens, we assembled Metagenome-Assembled Genomes (MAGs) and characterise their functional profiles. Afterwards, using 8 samples, we integrated this sequencing data with chicken performance metadata body weight (BW), weight gain, feed intake (FI), feed conversion ratio (FCR) and age. MAGs belonging to specific families were found to be positively associated with changes in performance parameters. Functional analyses suggest changes in nutrient geochemical cycles including hydrogen generation within the carbon-cycle. Furthermore, 108 CAZymes were identified for MAGs belonging to two major families - glycoside hydrolase (GH) and polysaccharide lyase (PL), which are important for breakdown of dietary carbohydrates and fibres. A total of 13 polysaccharide lyases were identified functioning on day 20 with enzymes were specific to organs. Overall, our results provide a deeper understanding of microbial-mediated metabolism concerning key performance parameters in chicken production.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"355"},"PeriodicalIF":1.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12357378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07441-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Although taxonomic variations in chicken gut microbiota have been previously documented, their functional capacity remain poorly understood. To gain a better understanding, we incorporated whole genome shotgun metagenomics to analyse microbial communities of two different organs: the caeca and the large intestine.
Results: Using 24 samples obtained from the caeca and the large intestine of commercial chickens, we assembled Metagenome-Assembled Genomes (MAGs) and characterise their functional profiles. Afterwards, using 8 samples, we integrated this sequencing data with chicken performance metadata body weight (BW), weight gain, feed intake (FI), feed conversion ratio (FCR) and age. MAGs belonging to specific families were found to be positively associated with changes in performance parameters. Functional analyses suggest changes in nutrient geochemical cycles including hydrogen generation within the carbon-cycle. Furthermore, 108 CAZymes were identified for MAGs belonging to two major families - glycoside hydrolase (GH) and polysaccharide lyase (PL), which are important for breakdown of dietary carbohydrates and fibres. A total of 13 polysaccharide lyases were identified functioning on day 20 with enzymes were specific to organs. Overall, our results provide a deeper understanding of microbial-mediated metabolism concerning key performance parameters in chicken production.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.