Identification of inflow sources and pathways to a waste rock dump located in a former river channel in a mountainous abandoned mine of Japan: A case study 60 years post-construction
{"title":"Identification of inflow sources and pathways to a waste rock dump located in a former river channel in a mountainous abandoned mine of Japan: A case study 60 years post-construction","authors":"Shinji Matsumoto , Sereyroith Tum , Tagiru Ogino , Miu Nishikata , Tetsuo Yasutaka , Tomoko Oguri , Tsuyoshi Shintani","doi":"10.1016/j.ejrh.2025.102645","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>A legacy underground mine located in a mountainous region of Hokkaido, northern Japan.</div></div><div><h3>Study focus</h3><div>The concentrations of dissolved ions and stable water isotopes (δ¹⁸O and δ²H) in surface water from surrounding rivers and groundwater near a waste rock dump (WD) were analyzed. Continuous water quality monitoring was performed using data loggers. Tracer tests using NaCl were also performed in the rivers. Time-series analysis and correlation studies elucidated the origins and pathways of water inflow to the WD.</div></div><div><h3>New hydrological insights for the region</h3><div>Water inflow into the WD predominantly originated from groundwater in the surrounding mountainous terrain and river water, serving as the primary contributors to mining-influenced water (MIW). The inflow volumes and MIW generation increased during precipitation events and snowmelt periods. These processes could have been influenced by the degradation of impermeable structures around the WD, emphasizing the need for continuous water quality monitoring and repair of these structures. This research highlights the necessity of long-term planning for WD management, considering regional climatic and topographic characteristics, to mitigate water pollution risks. It provides new insights into reducing environmental impacts and enhancing the sustainability of mining operations in mountainous regions. Moreover, this study demonstrates that a combination of hydrological approaches—water quality analysis, isotopic studies, and tracer tests—is a valuable tool for gathering critical information on MIW in mountainous mining regions.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"61 ","pages":"Article 102645"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825004707","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Study region
A legacy underground mine located in a mountainous region of Hokkaido, northern Japan.
Study focus
The concentrations of dissolved ions and stable water isotopes (δ¹⁸O and δ²H) in surface water from surrounding rivers and groundwater near a waste rock dump (WD) were analyzed. Continuous water quality monitoring was performed using data loggers. Tracer tests using NaCl were also performed in the rivers. Time-series analysis and correlation studies elucidated the origins and pathways of water inflow to the WD.
New hydrological insights for the region
Water inflow into the WD predominantly originated from groundwater in the surrounding mountainous terrain and river water, serving as the primary contributors to mining-influenced water (MIW). The inflow volumes and MIW generation increased during precipitation events and snowmelt periods. These processes could have been influenced by the degradation of impermeable structures around the WD, emphasizing the need for continuous water quality monitoring and repair of these structures. This research highlights the necessity of long-term planning for WD management, considering regional climatic and topographic characteristics, to mitigate water pollution risks. It provides new insights into reducing environmental impacts and enhancing the sustainability of mining operations in mountainous regions. Moreover, this study demonstrates that a combination of hydrological approaches—water quality analysis, isotopic studies, and tracer tests—is a valuable tool for gathering critical information on MIW in mountainous mining regions.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.