{"title":"The soliton solutions for an integrable nonlocal reverse space–time fifth-order nonlinear Schrödinger equation by the inverse scattering transform","authors":"Huanhuan Lu","doi":"10.1016/j.wavemoti.2025.103619","DOIUrl":null,"url":null,"abstract":"<div><div>This paper begins by deducing a reverse space–time nonlocal fifth-order nonlinear Schrödinger (NLS) equation, which arises from a simple yet significant symmetry reduction of the corresponding local system. Following this, the determinant form of <span><math><mi>N</mi></math></span> soliton solutions is thoroughly constructed based on established Gelfand–Levitan–Marchenko(GLM) equation. As a typical application, some exact solutions are derived, including one-soliton, two-soliton, and three-soliton solutions. The dynamical properties of these solutions are further explored and visualized through graphical analysis. Moreover, the integrability of the equation is established by presenting an infinite set of conserved densities. It is particularly noteworthy that we also present the expression for the three-soliton solution, which represents an unprecedented achievement in this field.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103619"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper begins by deducing a reverse space–time nonlocal fifth-order nonlinear Schrödinger (NLS) equation, which arises from a simple yet significant symmetry reduction of the corresponding local system. Following this, the determinant form of soliton solutions is thoroughly constructed based on established Gelfand–Levitan–Marchenko(GLM) equation. As a typical application, some exact solutions are derived, including one-soliton, two-soliton, and three-soliton solutions. The dynamical properties of these solutions are further explored and visualized through graphical analysis. Moreover, the integrability of the equation is established by presenting an infinite set of conserved densities. It is particularly noteworthy that we also present the expression for the three-soliton solution, which represents an unprecedented achievement in this field.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.