High-spin surface FeIV = O synthesis with molecular oxygen and pyrite for selective methane oxidation

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Cancan Ling, Meiqi Li, Hao Li, Xiufan Liu, Furong Guo, Yi Liu, Rui Zhang, Jincai Zhao, Lizhi Zhang
{"title":"High-spin surface FeIV = O synthesis with molecular oxygen and pyrite for selective methane oxidation","authors":"Cancan Ling, Meiqi Li, Hao Li, Xiufan Liu, Furong Guo, Yi Liu, Rui Zhang, Jincai Zhao, Lizhi Zhang","doi":"10.1038/s41467-025-63087-w","DOIUrl":null,"url":null,"abstract":"<p>Nature-inspired high-spin Fe<sup>IV</sup> = O generation enables efficient ambient methane oxidation. By engineering sulfur-bridged dual ≡Fe<sup>II</sup>…Fe<sup>II</sup>≡ sites on pyrite (FeS<sub>2</sub>) mimicking soluble methane monooxygenase, we achieve O<sub>2</sub>-driven formation of high-spin (S = 2) surface Fe<sup>IV</sup> = O species at room temperature and pressure. Strategic removal of bridging S atoms creates active sites that facilitate O<sub>2</sub> activation via transient ≡Fe-O-O-Fe≡ intermediates, promoting homolytic O − O bond cleavage. The resulting Fe<sup>IV</sup> = O exhibits an asymmetrically distorted coordination environment that reduces the crystal field splitting and favors the occupation of higher energy d-orbitals with unpaired electrons. Impressively, this configuration can efficiently convert CH<sub>4</sub> to CH<sub>3</sub>OH through an oxygen transfer reaction with a synthetic efficiency of TOF = 27.4 h<sup>−1</sup> and selectivity of 87.0%, outperforming most ambient O<sub>2</sub>-driven benchmarks under comparable conditions and even surpassing many H<sub>2</sub>O<sub>2</sub>-mediated systems. This study offers a facile method to synthesize high-spin surface Fe<sup>IV</sup> = O and highlights the importance of metal spin state tailoring on non-enzymatic methane activation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63087-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nature-inspired high-spin FeIV = O generation enables efficient ambient methane oxidation. By engineering sulfur-bridged dual ≡FeII…FeII≡ sites on pyrite (FeS2) mimicking soluble methane monooxygenase, we achieve O2-driven formation of high-spin (S = 2) surface FeIV = O species at room temperature and pressure. Strategic removal of bridging S atoms creates active sites that facilitate O2 activation via transient ≡Fe-O-O-Fe≡ intermediates, promoting homolytic O − O bond cleavage. The resulting FeIV = O exhibits an asymmetrically distorted coordination environment that reduces the crystal field splitting and favors the occupation of higher energy d-orbitals with unpaired electrons. Impressively, this configuration can efficiently convert CH4 to CH3OH through an oxygen transfer reaction with a synthetic efficiency of TOF = 27.4 h−1 and selectivity of 87.0%, outperforming most ambient O2-driven benchmarks under comparable conditions and even surpassing many H2O2-mediated systems. This study offers a facile method to synthesize high-spin surface FeIV = O and highlights the importance of metal spin state tailoring on non-enzymatic methane activation.

Abstract Image

用分子氧和黄铁矿合成高自旋表面FeIV = O选择性氧化甲烷
受自然启发的高自旋FeIV = O生成能够有效地氧化环境中的甲烷。通过工程硫桥双≡FeII…FeII≡硫铁矿(FeS2)上模拟可溶性甲烷单加氧酶的位置,我们在室温和常压下实现了由o2驱动形成的高自旋(S = 2)表面FeIV = O物质。战略性地去除桥接S原子产生活性位点,通过瞬态≡Fe-O-O-Fe中间物促进O2活化,促进O−O键的均溶裂解。得到的FeIV = O表现出不对称扭曲的配位环境,减少了晶体场分裂,有利于未配对电子占据高能d轨道。令人印象深刻的是,该结构可以通过氧转移反应有效地将CH4转化为CH3OH,合成效率为27.4 h−1,选择性为87.0%,在类似条件下优于大多数环境o2驱动的基准,甚至超过许多h2o2介导的体系。本研究提供了一种简便的方法来合成高自旋表面FeIV = O,并强调了金属自旋态裁剪对非酶促甲烷活化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信