Innovative diopside–MnFe2O4 nanocomposites: a multifunctional platform for bone regeneration and hyperthermia therapy featuring MnFe2O4 nanoparticles with near-bulk magnetic performance

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Guan-Xiang Liao, Wei-Hsi Chang, Yu-Sheng Tseng and Wen-Fan Chen
{"title":"Innovative diopside–MnFe2O4 nanocomposites: a multifunctional platform for bone regeneration and hyperthermia therapy featuring MnFe2O4 nanoparticles with near-bulk magnetic performance","authors":"Guan-Xiang Liao, Wei-Hsi Chang, Yu-Sheng Tseng and Wen-Fan Chen","doi":"10.1039/D5TB00860C","DOIUrl":null,"url":null,"abstract":"<p >This study explores the novel integration of MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles into diopside bioceramics, paving the way for advanced multifunctional nanocomposites tailored for orthopedic and oncological applications. Diopside is synthesized using biowaste-derived eggshells and rice husks <em>via</em> solid-state reaction at an optimal sintering temperature of 1200 °C. MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles, with an average particle size of 46 nm, are produced through a facile hydrothermal method coupled with magnetic separation, achieving an impressive saturation magnetization (<em>M</em><small><sub>s</sub></small>) of 81.6 emu g<small><sup>−1</sup></small> (99.5% of bulk MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small>) – the highest reported to date. This exceptional performance is attributed to the nanoparticles’ excellent crystallinity, single-domain behavior, and minimized surface effects. Incorporating MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles into diopside significantly enhances the sinterability, density, and hardness by 2–2.5 times while reducing porosity to ∼1%. Even at a low addition of 10 wt% MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small>, the nanocomposites demonstrate effective hyperthermia within a safe therapeutic range (41–46 °C) under an alternating magnetic field, with negligible coercivity and remanence. Biocompatibility evaluations confirm no cytotoxicity and reveal enhanced osteoblast differentiation and mineralization. This study successfully synthesizes MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanoparticles with near-bulk saturation magnetization and highlights diopside–MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanocomposites as promising candidates for sustainable and multifunctional biomaterials, offering load-bearing support, efficient hyperthermia for osteosarcoma therapy, and accelerated bone regeneration.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 35","pages":" 10982-11000"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00860c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the novel integration of MnFe2O4 nanoparticles into diopside bioceramics, paving the way for advanced multifunctional nanocomposites tailored for orthopedic and oncological applications. Diopside is synthesized using biowaste-derived eggshells and rice husks via solid-state reaction at an optimal sintering temperature of 1200 °C. MnFe2O4 nanoparticles, with an average particle size of 46 nm, are produced through a facile hydrothermal method coupled with magnetic separation, achieving an impressive saturation magnetization (Ms) of 81.6 emu g−1 (99.5% of bulk MnFe2O4) – the highest reported to date. This exceptional performance is attributed to the nanoparticles’ excellent crystallinity, single-domain behavior, and minimized surface effects. Incorporating MnFe2O4 nanoparticles into diopside significantly enhances the sinterability, density, and hardness by 2–2.5 times while reducing porosity to ∼1%. Even at a low addition of 10 wt% MnFe2O4, the nanocomposites demonstrate effective hyperthermia within a safe therapeutic range (41–46 °C) under an alternating magnetic field, with negligible coercivity and remanence. Biocompatibility evaluations confirm no cytotoxicity and reveal enhanced osteoblast differentiation and mineralization. This study successfully synthesizes MnFe2O4 nanoparticles with near-bulk saturation magnetization and highlights diopside–MnFe2O4 nanocomposites as promising candidates for sustainable and multifunctional biomaterials, offering load-bearing support, efficient hyperthermia for osteosarcoma therapy, and accelerated bone regeneration.

Abstract Image

创新的二氧化钛-MnFe2O4纳米复合材料:一种用于骨再生和热疗的多功能平台,具有接近体磁性的MnFe2O4纳米颗粒。
本研究探索了将MnFe2O4纳米颗粒整合到透辉石生物陶瓷中的新方法,为骨科和肿瘤学应用的先进多功能纳米复合材料铺平了道路。以生物废弃物为原料的蛋壳和稻壳为原料,在1200℃的烧结温度下,通过固相反应合成透辉石。MnFe2O4纳米颗粒的平均粒径为46 nm,通过简单的水热法结合磁分离制备,获得了令人印象深刻的饱和磁化强度(Ms),达到81.6 emu g-1(99.5%的MnFe2O4体积),这是迄今为止报道的最高磁化强度。这种优异的性能归功于纳米颗粒优异的结晶度、单畴行为和最小的表面效应。在透辉石中加入MnFe2O4纳米颗粒,烧结性能、密度和硬度提高了2-2.5倍,孔隙率降低到1%。即使在MnFe2O4添加量为10 wt%的情况下,纳米复合材料在交变磁场的安全治疗范围内(41-46°C)表现出有效的热疗效果,矫顽力和剩余物可以忽略不计。生物相容性评估证实无细胞毒性,并显示增强的成骨细胞分化和矿化。该研究成功合成了具有近体饱和磁化强度的MnFe2O4纳米颗粒,并突出了二氧化钛-MnFe2O4纳米复合材料作为可持续和多功能生物材料的有前途的候选材料,为骨肉瘤治疗提供承重支撑,有效的热疗,加速骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信