3D vector field-guided toolpathing for 3D bioprinting.

Meghan Rochelle Griffin, Spencer E Bertram, Noah P Robison, Angela Panoskaltsis-Mortari, Ravi Janardan, Michael C McAlpine
{"title":"3D vector field-guided toolpathing for 3D bioprinting.","authors":"Meghan Rochelle Griffin, Spencer E Bertram, Noah P Robison, Angela Panoskaltsis-Mortari, Ravi Janardan, Michael C McAlpine","doi":"10.1038/s44172-025-00489-0","DOIUrl":null,"url":null,"abstract":"<p><p>Complex fibrous microarchitectures are common in biology, with fiber orientation playing a key role in the structure-function relationships that govern tissue behavior. Directional imaging modalities, such as diffusion tensor magnetic resonance imaging (DTMRI), can be used to derive a 3D vector map of fiber orientation. Incorporating this alignment information into engineered tissues remains a challenging and evolving area of research, with direct incorporation of directional imaging data into engineered tissue structures yet to be achieved. Here we describe an algorithmic framework, entitled Nonplanar, Architecture-Aligned Toolpathing for In Vitro 3D bioprinting (NAATIV3), which processes DTMRI data to map tissue fibers, reduce them to a representative subset, remove conflicting fibers, select a printable sequence, and output a G-code file. DTMRI data from a human left ventricle was used to 3D print fibered models with high accuracy. It is anticipated that NAATIV3 is generalizable beyond the cardiac application demonstrated here. Directional imaging data from a variety of organs, disease states, and developmental timepoints may be processible by NAATIV3, enabling the creation of models for understanding development, physiology, and pathophysiology. Furthermore, the NAATIV3 framework could be extended to bioengineered food manufacturing, plant engineering, and beyond.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"154"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00489-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex fibrous microarchitectures are common in biology, with fiber orientation playing a key role in the structure-function relationships that govern tissue behavior. Directional imaging modalities, such as diffusion tensor magnetic resonance imaging (DTMRI), can be used to derive a 3D vector map of fiber orientation. Incorporating this alignment information into engineered tissues remains a challenging and evolving area of research, with direct incorporation of directional imaging data into engineered tissue structures yet to be achieved. Here we describe an algorithmic framework, entitled Nonplanar, Architecture-Aligned Toolpathing for In Vitro 3D bioprinting (NAATIV3), which processes DTMRI data to map tissue fibers, reduce them to a representative subset, remove conflicting fibers, select a printable sequence, and output a G-code file. DTMRI data from a human left ventricle was used to 3D print fibered models with high accuracy. It is anticipated that NAATIV3 is generalizable beyond the cardiac application demonstrated here. Directional imaging data from a variety of organs, disease states, and developmental timepoints may be processible by NAATIV3, enabling the creation of models for understanding development, physiology, and pathophysiology. Furthermore, the NAATIV3 framework could be extended to bioengineered food manufacturing, plant engineering, and beyond.

3D矢量场导向的3D生物打印工具路径。
复杂的纤维微结构在生物学中很常见,纤维取向在控制组织行为的结构-功能关系中起着关键作用。定向成像方式,如扩散张量磁共振成像(DTMRI),可用于导出纤维方向的三维矢量图。将这种定位信息整合到工程组织中仍然是一个具有挑战性和不断发展的研究领域,直接将定向成像数据整合到工程组织结构中尚未实现。在这里,我们描述了一个算法框架,名为非平面,结构对齐的体外生物3D打印工具路径(NAATIV3),它处理DTMRI数据来绘制组织纤维,将它们减少到一个有代表性的子集,去除冲突的纤维,选择可打印的序列,并输出g代码文件。利用人类左心室DTMRI数据进行高精度3D打印纤维模型。预计NAATIV3可以推广到心脏以外的应用。NAATIV3可以处理来自各种器官、疾病状态和发育时间点的定向成像数据,从而创建理解发育、生理学和病理生理学的模型。此外,NAATIV3框架可以扩展到生物工程食品制造、植物工程等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信