M-keratin induces regeneration of bone tissue in sprague-dawley rats.

Zhuojia Zheng, Yu Zhang, Mengxuan Xie, Wengui Lian, Liyi Zhu, Wuya Chen
{"title":"M-keratin induces regeneration of bone tissue in sprague-dawley rats.","authors":"Zhuojia Zheng, Yu Zhang, Mengxuan Xie, Wengui Lian, Liyi Zhu, Wuya Chen","doi":"10.1088/1748-605X/adfbdb","DOIUrl":null,"url":null,"abstract":"<p><p>Mineralized keratin (M-keratin) has previously been shown to promote the differentiation of dental pulp stem cells (DPSCs) into odontoblasts; however, the<i>in vivo</i>biological effects and biocompatibility of this material have not yet been illustrated. To investigate this, we first prepared M-keratin (defined as keratin that has been mineralized in Simulated body fluid) nanoparticles, then, implanted these into a femoral injury Sprague-Dawley Rats model. Signs of bone regeneration were observed and/or detected by CT scan, HE stains, Masson stain, and Western blot. We found the regeneration of bone tissue was accelerated in the 28 d following implantation, seen as an up-regulation in the expression of Runx2, ALP, BMP-2, and OSX proteins. GO enrichment analysis and KEGG pathway enrichment analysis showed that cell membrane regulation and calcium ion signaling pathway were significantly activated, and it was revealed that multiple genes served as cross-linking hubs between different signaling pathways to jointly promote bone tissue repair. With this study, we hope to provide a theoretical basis for the clinical treatment of bone defect diseases.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adfbdb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mineralized keratin (M-keratin) has previously been shown to promote the differentiation of dental pulp stem cells (DPSCs) into odontoblasts; however, thein vivobiological effects and biocompatibility of this material have not yet been illustrated. To investigate this, we first prepared M-keratin (defined as keratin that has been mineralized in Simulated body fluid) nanoparticles, then, implanted these into a femoral injury Sprague-Dawley Rats model. Signs of bone regeneration were observed and/or detected by CT scan, HE stains, Masson stain, and Western blot. We found the regeneration of bone tissue was accelerated in the 28 d following implantation, seen as an up-regulation in the expression of Runx2, ALP, BMP-2, and OSX proteins. GO enrichment analysis and KEGG pathway enrichment analysis showed that cell membrane regulation and calcium ion signaling pathway were significantly activated, and it was revealed that multiple genes served as cross-linking hubs between different signaling pathways to jointly promote bone tissue repair. With this study, we hope to provide a theoretical basis for the clinical treatment of bone defect diseases.

m -角蛋白诱导sd大鼠骨组织再生。
矿化角蛋白(m -角蛋白)已经被证明可以促进牙髓干细胞(DPSCs)向成牙细胞的分化;然而,这种材料的体内生物学效应和生物相容性尚未得到证实。为了研究这一点,我们首先制备了m -角蛋白(定义为在模拟体液中矿化的角蛋白)纳米颗粒,然后将其植入股骨损伤大鼠模型中。通过CT扫描、HE染色、Masson染色和Western blot观察和/或检测骨再生迹象。我们发现骨组织的再生在植入后28天加速,可以看出Runx2、ALP、BMP-2和OSX蛋白的表达上调。GO富集分析和KEGG通路富集分析显示,细胞膜调控和钙离子信号通路被显著激活,揭示了多个基因在不同信号通路之间起交联枢纽作用,共同促进骨组织修复。希望通过本研究为临床治疗骨缺损性疾病提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信