Junxu Chen, Derong Zou, Dongwook Kim, Hyung Jun Kim
{"title":"Explainable machine learning for the prognostication of salivary duct carcinoma: Development and deployment of a web-based prediction tool.","authors":"Junxu Chen, Derong Zou, Dongwook Kim, Hyung Jun Kim","doi":"10.1016/j.jormas.2025.102528","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Salivary duct carcinoma (SDC) is a rare but aggressive malignancy often associated with lymph node metastasis and poor prognosis. Therefore, although accurate prognostication is crucial, traditional models are often inadequate because of linear assumptions and limited interpretability. In contrast, machine learning (ML) offers a flexible, interpretable framework for improving survival prediction and supporting individualized care planning.</p><p><strong>Method: </strong>Overall, 552 patients with SDC (2004-2021) were identified from the Surveillance, Epidemiology, and End Results database and stratified by cancer-specific survival (CSS) and overall survival (OS) status, before being split into the training and testing sets (7:3). Three prognostic models were developed: Cox proportional hazards, random survival forest (RSF), and DeepSurv. Model performance was evaluated using the concordance index (C-index), integrated Brier score, time-dependent area under the curve (AUC), calibration curves, and decision curve analysis. Shapley additive explanations (SHAP) values were applied to enhance model interpretability and quantify the contribution of individual features to risk prediction.</p><p><strong>Result: </strong>All three models demonstrated favorable predictive performance, with the RSF model showing the best discrimination and calibration (C-index: 0.785 in training and 0.768 in testing). For CSS prediction, the 1-, 3-, and 5-year AUCs in the testing set were 0.781, 0.810, and 0.818, respectively. SHAP analysis identified positive lymph node ratio, TNM stage, and excision surgery as key prognostic predictors. The RSF model was selected for deployment as an interactive web-based tool.</p><p><strong>Conclusion: </strong>This study established an interpretable ML-based model that reliably predicts CSS and OS in patients with SDC. Its successful deployment as a web-based tool underscores its potential to enhance personalized prognostic assessment and support evidence-based clinical management.</p>","PeriodicalId":56038,"journal":{"name":"Journal of Stomatology Oral and Maxillofacial Surgery","volume":" ","pages":"102528"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stomatology Oral and Maxillofacial Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jormas.2025.102528","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Salivary duct carcinoma (SDC) is a rare but aggressive malignancy often associated with lymph node metastasis and poor prognosis. Therefore, although accurate prognostication is crucial, traditional models are often inadequate because of linear assumptions and limited interpretability. In contrast, machine learning (ML) offers a flexible, interpretable framework for improving survival prediction and supporting individualized care planning.
Method: Overall, 552 patients with SDC (2004-2021) were identified from the Surveillance, Epidemiology, and End Results database and stratified by cancer-specific survival (CSS) and overall survival (OS) status, before being split into the training and testing sets (7:3). Three prognostic models were developed: Cox proportional hazards, random survival forest (RSF), and DeepSurv. Model performance was evaluated using the concordance index (C-index), integrated Brier score, time-dependent area under the curve (AUC), calibration curves, and decision curve analysis. Shapley additive explanations (SHAP) values were applied to enhance model interpretability and quantify the contribution of individual features to risk prediction.
Result: All three models demonstrated favorable predictive performance, with the RSF model showing the best discrimination and calibration (C-index: 0.785 in training and 0.768 in testing). For CSS prediction, the 1-, 3-, and 5-year AUCs in the testing set were 0.781, 0.810, and 0.818, respectively. SHAP analysis identified positive lymph node ratio, TNM stage, and excision surgery as key prognostic predictors. The RSF model was selected for deployment as an interactive web-based tool.
Conclusion: This study established an interpretable ML-based model that reliably predicts CSS and OS in patients with SDC. Its successful deployment as a web-based tool underscores its potential to enhance personalized prognostic assessment and support evidence-based clinical management.
期刊介绍:
J Stomatol Oral Maxillofac Surg publishes research papers and techniques - (guest) editorials, original articles, reviews, technical notes, case reports, images, letters to the editor, guidelines - dedicated to enhancing surgical expertise in all fields relevant to oral and maxillofacial surgery: from plastic and reconstructive surgery of the face, oral surgery and medicine, … to dentofacial and maxillofacial orthopedics.
Original articles include clinical or laboratory investigations and clinical or equipment reports. Reviews include narrative reviews, systematic reviews and meta-analyses.
All manuscripts submitted to the journal are subjected to peer review by international experts, and must:
Be written in excellent English, clear and easy to understand, precise and concise;
Bring new, interesting, valid information - and improve clinical care or guide future research;
Be solely the work of the author(s) stated;
Not have been previously published elsewhere and not be under consideration by another journal;
Be in accordance with the journal''s Guide for Authors'' instructions: manuscripts that fail to comply with these rules may be returned to the authors without being reviewed.
Under no circumstances does the journal guarantee publication before the editorial board makes its final decision.
The journal is indexed in the main international databases and is accessible worldwide through the ScienceDirect and ClinicalKey Platforms.