Alexander O'Loughlin, Samuel Simmons, Melike Kurt, Blair Thornton
{"title":"Soft buckling achieves consistent large-amplitude deformation for pulse jetting underwater robots.","authors":"Alexander O'Loughlin, Samuel Simmons, Melike Kurt, Blair Thornton","doi":"10.1088/1748-3190/adfbb7","DOIUrl":null,"url":null,"abstract":"<p><p>Jellyfish achieve efficient pulse jetting through large-amplitude, low-frequency deformations of a soft bell. This is made possible through large localised deformations at the bell margin. This paper develops a novel soft-robotic underwater pulse jetting method that harnesses the buckling of flexible tubes to generate thrust. Soft material instability is controlled through variation of internal water pressure in the tubes, where we demonstrate repeatable large-amplitude deformations with bell flexion angles of 29 ± 1.5<sup>∘</sup>over a frequency range of 0.2-1.1 Hz. The actuator is used to propel a soft robotic platform through water, achieving instantaneous velocities of up to 5 cm s<sup>-1</sup>with no noticeable degradation in performance over 1000 pressure cycles.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adfbb7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Jellyfish achieve efficient pulse jetting through large-amplitude, low-frequency deformations of a soft bell. This is made possible through large localised deformations at the bell margin. This paper develops a novel soft-robotic underwater pulse jetting method that harnesses the buckling of flexible tubes to generate thrust. Soft material instability is controlled through variation of internal water pressure in the tubes, where we demonstrate repeatable large-amplitude deformations with bell flexion angles of 29 ± 1.5∘over a frequency range of 0.2-1.1 Hz. The actuator is used to propel a soft robotic platform through water, achieving instantaneous velocities of up to 5 cm s-1with no noticeable degradation in performance over 1000 pressure cycles.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.