A fully automated, ultrasensitive luminescence cascade sensor to address hepatitis C diagnostic disparity.

IF 25.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
The Innovation Pub Date : 2025-05-15 eCollection Date: 2025-08-04 DOI:10.1016/j.xinn.2025.100952
Sungwan Kim, Adharsh Chellappaa, Juhyeon Chun, Jaebaek Lee, Joseph M Hardie, Manoj K Kanakasabapathy, Hemanth Kandula, Prudhvi Thirumalaraju, Gregory P Fricker, Jenna Gustafson, Raymond T Chung, Jorge Mera, Hadi Shafiee
{"title":"A fully automated, ultrasensitive luminescence cascade sensor to address hepatitis C diagnostic disparity.","authors":"Sungwan Kim, Adharsh Chellappaa, Juhyeon Chun, Jaebaek Lee, Joseph M Hardie, Manoj K Kanakasabapathy, Hemanth Kandula, Prudhvi Thirumalaraju, Gregory P Fricker, Jenna Gustafson, Raymond T Chung, Jorge Mera, Hadi Shafiee","doi":"10.1016/j.xinn.2025.100952","DOIUrl":null,"url":null,"abstract":"<p><p>Viral hepatitis poses a significant global health burden, with chronic hepatitis B and C causing about 1 million annual deaths from liver cancer and cirrhosis. Over 1.5 million new hepatitis C virus (HCV) cases arise yearly, especially among vulnerable groups like American Indians and Alaska Natives (AI/AN). Despite effective direct-acting antivirals, early HCV diagnosis remains challenging, particularly in resource-limited settings. Current two-step testing methods are costly and prone to patient dropout. Point-of-care (POC) HCV antigen (Ag) testing offers a promising early detection approach, but no US Food and Drug Administration (FDA)-approved POC test meets the sensitivity and specificity needed for low viral loads. To address this, we developed a fully automated bioluminescence-based POC assay using a cascade-based signal amplification strategy. Evaluated on 71 AI/AN samples, it showed 97% sensitivity, 94% specificity, and 96% accuracy. This technology can improve health equity by enabling accessible and reliable HCV testing for disproportionately affected populations.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 8","pages":"100952"},"PeriodicalIF":25.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12347247/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100952","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/4 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Viral hepatitis poses a significant global health burden, with chronic hepatitis B and C causing about 1 million annual deaths from liver cancer and cirrhosis. Over 1.5 million new hepatitis C virus (HCV) cases arise yearly, especially among vulnerable groups like American Indians and Alaska Natives (AI/AN). Despite effective direct-acting antivirals, early HCV diagnosis remains challenging, particularly in resource-limited settings. Current two-step testing methods are costly and prone to patient dropout. Point-of-care (POC) HCV antigen (Ag) testing offers a promising early detection approach, but no US Food and Drug Administration (FDA)-approved POC test meets the sensitivity and specificity needed for low viral loads. To address this, we developed a fully automated bioluminescence-based POC assay using a cascade-based signal amplification strategy. Evaluated on 71 AI/AN samples, it showed 97% sensitivity, 94% specificity, and 96% accuracy. This technology can improve health equity by enabling accessible and reliable HCV testing for disproportionately affected populations.

一个全自动,超灵敏的发光级联传感器,以解决丙型肝炎诊断差异。
病毒性肝炎是一个重大的全球健康负担,慢性乙型和丙型肝炎每年造成约100万人死于肝癌和肝硬化。每年新增丙型肝炎病毒(HCV)病例超过150万例,特别是在美国印第安人和阿拉斯加原住民等弱势群体中(AI/AN)。尽管有有效的直接抗病毒药物,早期HCV诊断仍然具有挑战性,特别是在资源有限的环境中。目前的两步检测方法既昂贵又容易导致患者退出。即时护理(POC) HCV抗原(Ag)检测提供了一种很有前景的早期检测方法,但美国食品和药物管理局(FDA)批准的POC检测无法满足低病毒载量所需的敏感性和特异性。为了解决这个问题,我们开发了一种基于级联信号放大策略的全自动生物发光POC检测方法。对71例AI/AN样本进行评估,其灵敏度为97%,特异性为94%,准确性为96%。这项技术可以通过为受丙型肝炎病毒严重影响的人群提供可获得和可靠的检测来改善卫生公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信