Mitochondrial dysfunction and oxidative stress in Parkinson's disease: mechanisms, biomarkers, and therapeutic strategies.

IF 4 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Pothu Usha Kiran, Jigar Haria, Reena Rani, Sudhir Singh
{"title":"Mitochondrial dysfunction and oxidative stress in Parkinson's disease: mechanisms, biomarkers, and therapeutic strategies.","authors":"Pothu Usha Kiran, Jigar Haria, Reena Rani, Sudhir Singh","doi":"10.1080/21688370.2025.2537991","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by motor symptoms and progressive degeneration of dopaminergic neurons. Accumulating evidence indicates that mitochondrial dysfunction and oxidative stress are major contributors to PD pathogenesis.</p><p><strong>Objectives: </strong>This review explores the molecular mechanisms underlying PD, emphasizing mitochondrial dysfunction and oxidative stress. It also examines genetic and environmental contributors, emerging biomarkers, and future treatment strategies.</p><p><strong>Methods: </strong>An extensive literature review was conducted, focusing on mitochondrial biology, oxidative stress, genetic mutations, and environmental toxins relevant to PD. Investigations into treatment options - including redox therapies, gene therapies, and lifestyle approaches - were also examined.</p><p><strong>Results: </strong>Mitochondrial dysfunction in PD includes disrupted oxidative phosphorylation and elevated reactive oxygen species (ROS). This also affects calcium homeostasis, especially in substantia nigra neurons. Genetic mutations (PINK1, Parkin, DJ-1, LRRK2, GBA) impair mitophagy and antioxidant defenses. Environmental toxins (e.g. MPTP, rotenone) further damage mitochondrial function and contribute to dopaminergic neuron loss. Emerging biomarkers involve measurements of lipid peroxidation and mitochondrial DNA damage. Promising therapeutic strategies include mitochondria-targeted antioxidants (e.g. MitoQ), PINK1-based gene therapy, Parkin activation, ketogenic diet, and exercise-induced mitochondrial biogenesis.</p><p><strong>Conclusions: </strong>Mitochondrial dysfunction and oxidative stress are central to PD pathophysiology. Strategies targeting these mechanisms may slow disease progression. Future research should emphasize combination therapies and early intervention trials, alongside biomarker integration, to enhance clinical outcomes.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2537991"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2025.2537991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by motor symptoms and progressive degeneration of dopaminergic neurons. Accumulating evidence indicates that mitochondrial dysfunction and oxidative stress are major contributors to PD pathogenesis.

Objectives: This review explores the molecular mechanisms underlying PD, emphasizing mitochondrial dysfunction and oxidative stress. It also examines genetic and environmental contributors, emerging biomarkers, and future treatment strategies.

Methods: An extensive literature review was conducted, focusing on mitochondrial biology, oxidative stress, genetic mutations, and environmental toxins relevant to PD. Investigations into treatment options - including redox therapies, gene therapies, and lifestyle approaches - were also examined.

Results: Mitochondrial dysfunction in PD includes disrupted oxidative phosphorylation and elevated reactive oxygen species (ROS). This also affects calcium homeostasis, especially in substantia nigra neurons. Genetic mutations (PINK1, Parkin, DJ-1, LRRK2, GBA) impair mitophagy and antioxidant defenses. Environmental toxins (e.g. MPTP, rotenone) further damage mitochondrial function and contribute to dopaminergic neuron loss. Emerging biomarkers involve measurements of lipid peroxidation and mitochondrial DNA damage. Promising therapeutic strategies include mitochondria-targeted antioxidants (e.g. MitoQ), PINK1-based gene therapy, Parkin activation, ketogenic diet, and exercise-induced mitochondrial biogenesis.

Conclusions: Mitochondrial dysfunction and oxidative stress are central to PD pathophysiology. Strategies targeting these mechanisms may slow disease progression. Future research should emphasize combination therapies and early intervention trials, alongside biomarker integration, to enhance clinical outcomes.

帕金森病的线粒体功能障碍和氧化应激:机制、生物标志物和治疗策略。
背景:帕金森病(PD)是第二常见的神经退行性疾病,其特征是运动症状和多巴胺能神经元的进行性变性。越来越多的证据表明,线粒体功能障碍和氧化应激是帕金森病发病的主要因素。目的:探讨帕金森病的分子机制,重点探讨线粒体功能障碍和氧化应激。它还研究了遗传和环境因素,新兴的生物标志物和未来的治疗策略。方法:广泛查阅与帕金森病相关的线粒体生物学、氧化应激、基因突变和环境毒素等方面的文献。对治疗方案的调查-包括氧化还原疗法,基因疗法和生活方式方法-也进行了检查。结果:帕金森病的线粒体功能障碍包括氧化磷酸化破坏和活性氧(ROS)升高。这也影响钙稳态,特别是在黑质神经元。基因突变(PINK1, Parkin, DJ-1, LRRK2, GBA)损害线粒体自噬和抗氧化防御。环境毒素(如MPTP、鱼藤酮)进一步损害线粒体功能并导致多巴胺能神经元丧失。新兴的生物标志物包括脂质过氧化和线粒体DNA损伤的测量。有前景的治疗策略包括线粒体靶向抗氧化剂(如MitoQ)、基于pink1的基因治疗、Parkin激活、生酮饮食和运动诱导的线粒体生物发生。结论:线粒体功能障碍和氧化应激是帕金森病病理生理的核心。针对这些机制的策略可能会减缓疾病进展。未来的研究应强调联合治疗和早期干预试验,以及生物标志物整合,以提高临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Barriers
Tissue Barriers MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.60
自引率
6.50%
发文量
25
期刊介绍: Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信