Temperature induces a shift from insulin dihexamer to hexamer in collective dynamics.

IF 5.2 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-09-01 DOI:10.1002/pro.70245
Esra Ayan
{"title":"Temperature induces a shift from insulin dihexamer to hexamer in collective dynamics.","authors":"Esra Ayan","doi":"10.1002/pro.70245","DOIUrl":null,"url":null,"abstract":"<p><p>Structures based on x-ray diffraction data collected at 2.3, 2.88, and 2.95 Å resolutions have been determined for long-acting dihexamer insulin at three different temperatures, ranging from 100 to 300 K. It has been observed that the unit-cell parameters of the insulin crystal at 100 K change at 200 K. This change is likely due to the subtle repacking of the rhombohedral insulin crystal and the loss of noncovalent interactions involving myristic acid, which binds two hexamers. Computational analyses indicate that allosteric residues and fatty acid-binding residues of insulin hexamers exhibit reduced collective dynamics and inter-residue coupling, possibly resulting from increased structural fluctuations due to elevated thermal vibrations. This transition has been observed at a characteristic temperature of 200 K, potentially highlighting underlying alterations in the dynamic structure of the fatty acid-solvent interface in the dimer of hexamers. Combined with computational analyses, these findings provide key insights into thermal stability mechanisms, which are crucial for developing thermostable insulin formulations in industrial applications.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 9","pages":"e70245"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70245","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Structures based on x-ray diffraction data collected at 2.3, 2.88, and 2.95 Å resolutions have been determined for long-acting dihexamer insulin at three different temperatures, ranging from 100 to 300 K. It has been observed that the unit-cell parameters of the insulin crystal at 100 K change at 200 K. This change is likely due to the subtle repacking of the rhombohedral insulin crystal and the loss of noncovalent interactions involving myristic acid, which binds two hexamers. Computational analyses indicate that allosteric residues and fatty acid-binding residues of insulin hexamers exhibit reduced collective dynamics and inter-residue coupling, possibly resulting from increased structural fluctuations due to elevated thermal vibrations. This transition has been observed at a characteristic temperature of 200 K, potentially highlighting underlying alterations in the dynamic structure of the fatty acid-solvent interface in the dimer of hexamers. Combined with computational analyses, these findings provide key insights into thermal stability mechanisms, which are crucial for developing thermostable insulin formulations in industrial applications.

温度诱导胰岛素二聚体向六聚体的转变。
基于在2.3、2.88和2.95 Å分辨率下收集的x射线衍射数据,已经确定了长效二聚体胰岛素在100至300 K三种不同温度下的结构。观察到胰岛素晶体在100k时的单位细胞参数在200k时发生变化。这种变化可能是由于菱形胰岛素晶体的微妙重新包装和涉及结合两个六聚体的肉豆蔻酸的非共价相互作用的丧失。计算分析表明,胰岛素六聚体的变构残基和脂肪酸结合残基表现出减少的集体动力学和残基间耦合,这可能是由于热振动升高引起的结构波动增加所致。这种转变是在200 K的特征温度下观察到的,可能突出了六聚体二聚体中脂肪酸-溶剂界面动态结构的潜在变化。结合计算分析,这些发现为热稳定性机制提供了关键见解,这对于开发工业应用中的热稳定胰岛素配方至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信