Dietary-dependent sensitization of neuronal leptin signaling promotes neural repair after injury via cAMP and gene transcription.

IF 15 1区 医学 Q1 NEUROSCIENCES
Neuron Pub Date : 2025-09-03 Epub Date: 2025-08-13 DOI:10.1016/j.neuron.2025.07.016
Jessica S Chadwick, Charlotte Decourt, Franziska Müller, Ines Maldonado-Lasuncion, Elisabeth Serger, Guiping Kong, Luming Zhou, Yayue Song, Yuyang Yan, Zhulin Yuan, Alessandro Falconieri, Phoebe Liddell, Linshan Chu, Wei Qin Chan, Lucia Luengo-Gutierrez, Ilaria Palmisano, Simone Di Giovanni
{"title":"Dietary-dependent sensitization of neuronal leptin signaling promotes neural repair after injury via cAMP and gene transcription.","authors":"Jessica S Chadwick, Charlotte Decourt, Franziska Müller, Ines Maldonado-Lasuncion, Elisabeth Serger, Guiping Kong, Luming Zhou, Yayue Song, Yuyang Yan, Zhulin Yuan, Alessandro Falconieri, Phoebe Liddell, Linshan Chu, Wei Qin Chan, Lucia Luengo-Gutierrez, Ilaria Palmisano, Simone Di Giovanni","doi":"10.1016/j.neuron.2025.07.016","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary-dependent shifts, ranging from metabolic dysfunction to health, involve transitions in key signaling pathways. Dietary regimens can influence nervous system repair, but whether conserved, diet-specific mechanisms can enhance neuronal regeneration by directly sensitizing neuronal signaling remains unclear. We found that in mice, in contrast to a neuropathy-inducing high-fat diet that causes leptin resistance, intermittent fasting (IF) enhances leptin sensitivity in dorsal root ganglia sensory neurons. Deletion of leptin receptors in sensory neurons impairs IF-induced regeneration. Systemic leptin or leptin neuronal overexpression promote axonal repair after sciatic nerve crush and spinal cord injury via endocrine or autocrine mechanism, respectively. Leptin-dependent axon growth requires cyclic AMP (cAMP) signaling, transcriptional activity, and regenerative gene expression to support axon growth after injury. Unexpectedly, leptin, whose canonical function is to control feeding, promotes neuronal regenerative signaling, highlighting a novel role in nervous system regeneration and providing insights into diet-dependent neurorepair mechanisms.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"2839-2855.e8"},"PeriodicalIF":15.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.07.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dietary-dependent shifts, ranging from metabolic dysfunction to health, involve transitions in key signaling pathways. Dietary regimens can influence nervous system repair, but whether conserved, diet-specific mechanisms can enhance neuronal regeneration by directly sensitizing neuronal signaling remains unclear. We found that in mice, in contrast to a neuropathy-inducing high-fat diet that causes leptin resistance, intermittent fasting (IF) enhances leptin sensitivity in dorsal root ganglia sensory neurons. Deletion of leptin receptors in sensory neurons impairs IF-induced regeneration. Systemic leptin or leptin neuronal overexpression promote axonal repair after sciatic nerve crush and spinal cord injury via endocrine or autocrine mechanism, respectively. Leptin-dependent axon growth requires cyclic AMP (cAMP) signaling, transcriptional activity, and regenerative gene expression to support axon growth after injury. Unexpectedly, leptin, whose canonical function is to control feeding, promotes neuronal regenerative signaling, highlighting a novel role in nervous system regeneration and providing insights into diet-dependent neurorepair mechanisms.

饮食依赖的神经瘦素信号敏化通过cAMP和基因转录促进损伤后的神经修复。
饮食依赖的转变,从代谢功能障碍到健康,涉及关键信号通路的转变。饮食方案可以影响神经系统的修复,但是否保守的、饮食特异性的机制可以通过直接敏感神经元信号来增强神经元再生尚不清楚。我们发现,在小鼠中,与引起神经病变的高脂肪饮食导致瘦素抵抗相反,间歇性禁食(IF)增强了背根神经节感觉神经元中瘦素的敏感性。感觉神经元中瘦素受体的缺失会损害if诱导的再生。系统性瘦素或瘦素神经元过表达分别通过内分泌或自分泌机制促进坐骨神经挤压和脊髓损伤后的轴突修复。瘦素依赖性轴突生长需要环AMP (cAMP)信号、转录活性和再生基因表达来支持损伤后轴突生长。出乎意料的是,瘦素(其典型功能是控制摄食)促进神经元再生信号,突出了在神经系统再生中的新作用,并为饮食依赖的神经修复机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信