{"title":"Progress in Heterocyclic Hybrids for Breast Cancer Therapy: Emerging Trends, Hybridization Techniques, Mechanistic Pathways and SAR Insights.","authors":"Akhilesh Gangwar, Agnidipta Das, Vikas Jaitak","doi":"10.2174/0113895575386481250811052953","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Breast cancer is a widespread and life-threatening disease. While FDAapproved anti-BC drugs have improved survival rates, issues like drug resistance and adverse effects highlight the need for new therapeutic options. Molecular hybridization, a modern drug discovery strategy, combines different pharmacophores or frameworks into a single molecule to enhance pharmacological activity and improve treatment outcomes. Hybridizing two or more heterocyclic moieties has become a promising approach in anti-cancer drug discovery.</p><p><strong>Methods: </strong>This article reviews the role of heterocyclic hybrids in BC therapy, based on literature from 1995 to 2024 available in PubMed. Key heterocyclic hybrids, pyrimidine, triazole, indole, coumarin, beta-carboline, azepine, isoquinoline, benzoxepine, and platinum-core hybrids were included.</p><p><strong>Results: </strong>Triazole, in particular, was found to be a highly effective scaffold for BC treatment when combined with indole, pyridazinone, and steroid pharmacophores.</p><p><strong>Discussion: </strong>The article discusses novel molecular hybridization strategies, current BC treatment options, clinical studies, key functional groups, anti-apoptotic mechanisms, and protein-ligand interactions. Structure-activity relationships are explored to highlight desirable pharmacophoric features, aiding in the development of more effective BC therapies.</p><p><strong>Conclusion: </strong>Each heterocyclic hybrid class of BC comprises some salient features and potentials, which may be further investigated to obtain novel effective heterocyclic hybrid molecules in BC therapy.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575386481250811052953","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Breast cancer is a widespread and life-threatening disease. While FDAapproved anti-BC drugs have improved survival rates, issues like drug resistance and adverse effects highlight the need for new therapeutic options. Molecular hybridization, a modern drug discovery strategy, combines different pharmacophores or frameworks into a single molecule to enhance pharmacological activity and improve treatment outcomes. Hybridizing two or more heterocyclic moieties has become a promising approach in anti-cancer drug discovery.
Methods: This article reviews the role of heterocyclic hybrids in BC therapy, based on literature from 1995 to 2024 available in PubMed. Key heterocyclic hybrids, pyrimidine, triazole, indole, coumarin, beta-carboline, azepine, isoquinoline, benzoxepine, and platinum-core hybrids were included.
Results: Triazole, in particular, was found to be a highly effective scaffold for BC treatment when combined with indole, pyridazinone, and steroid pharmacophores.
Discussion: The article discusses novel molecular hybridization strategies, current BC treatment options, clinical studies, key functional groups, anti-apoptotic mechanisms, and protein-ligand interactions. Structure-activity relationships are explored to highlight desirable pharmacophoric features, aiding in the development of more effective BC therapies.
Conclusion: Each heterocyclic hybrid class of BC comprises some salient features and potentials, which may be further investigated to obtain novel effective heterocyclic hybrid molecules in BC therapy.
期刊介绍:
The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines.
Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies.
Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.