Comparative evaluation of supervised and unsupervised deep learning strategies for denoising hyperpolarized 129Xe lung MRI.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Abdullah S Bdaiwi, Matthew M Willmering, Riaz Hussain, Erik Hysinger, Jason C Woods, Laura L Walkup, Zackary I Cleveland
{"title":"Comparative evaluation of supervised and unsupervised deep learning strategies for denoising hyperpolarized <sup>129</sup>Xe lung MRI.","authors":"Abdullah S Bdaiwi, Matthew M Willmering, Riaz Hussain, Erik Hysinger, Jason C Woods, Laura L Walkup, Zackary I Cleveland","doi":"10.1002/mrm.70033","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Reduced signal-to-noise ratio (SNR) in hyperpolarized <sup>129</sup>Xe MR images can affect accurate quantification for research and diagnostic evaluations. Thus, this study explores the application of supervised deep learning (DL) denoising, traditional (Trad) and Noise2Noise (N2N) and unsupervised Noise2void (N2V) approaches for <sup>129</sup>Xe MR imaging.</p><p><strong>Methods: </strong>The DL denoising frameworks were trained and tested on 952 <sup>129</sup>Xe MRI data sets (421 ventilation, 125 diffusion-weighted, and 406 gas-exchange acquisitions) from healthy subjects and participants with cardiopulmonary conditions and compared with the block matching 3D denoising technique. Evaluation involved mean signal, noise standard deviation (SD), SNR, and sharpness. Ventilation defect percentage (VDP), apparent diffusion coefficient (ADC), membrane uptake, red blood cell (RBC) transfer, and RBC:Membrane were also evaluated for ventilation, diffusion, and gas-exchange images, respectively.</p><p><strong>Results: </strong>Denoising methods significantly reduced noise SDs and enhanced SNR (p < 0.05) across all imaging types. Traditional ventilation model (Trad<sub>vent</sub>) improved sharpness in ventilation images but underestimated VDP (bias = -1.37%) relative to raw images, whereas N2N<sub>vent</sub> overestimated VDP (bias = +1.88%). Block matching 3D and N2V<sub>vent</sub> showed minimal VDP bias (≤ 0.35%). Denoising significantly reduced ADC mean and SD (p < 0.05, bias ≤ - 0.63 × 10<sup>-2</sup>). The values of Trad<sub>vent</sub> and N2N<sub>vent</sub> increased mean membrane and RBC (p < 0.001) with no change in RBC:Membrane. Denoising also reduced SDs of all gas-exchange metrics (p < 0.01).</p><p><strong>Conclusions: </strong>Low SNR may impair the potential of <sup>129</sup>Xe MRI for clinical diagnosis and lung function assessment. The evaluation of supervised and unsupervised DL denoising methods enhanced <sup>129</sup>Xe imaging quality, offering promise for improved clinical interpretation and diagnosis.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370284/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Reduced signal-to-noise ratio (SNR) in hyperpolarized 129Xe MR images can affect accurate quantification for research and diagnostic evaluations. Thus, this study explores the application of supervised deep learning (DL) denoising, traditional (Trad) and Noise2Noise (N2N) and unsupervised Noise2void (N2V) approaches for 129Xe MR imaging.

Methods: The DL denoising frameworks were trained and tested on 952 129Xe MRI data sets (421 ventilation, 125 diffusion-weighted, and 406 gas-exchange acquisitions) from healthy subjects and participants with cardiopulmonary conditions and compared with the block matching 3D denoising technique. Evaluation involved mean signal, noise standard deviation (SD), SNR, and sharpness. Ventilation defect percentage (VDP), apparent diffusion coefficient (ADC), membrane uptake, red blood cell (RBC) transfer, and RBC:Membrane were also evaluated for ventilation, diffusion, and gas-exchange images, respectively.

Results: Denoising methods significantly reduced noise SDs and enhanced SNR (p < 0.05) across all imaging types. Traditional ventilation model (Tradvent) improved sharpness in ventilation images but underestimated VDP (bias = -1.37%) relative to raw images, whereas N2Nvent overestimated VDP (bias = +1.88%). Block matching 3D and N2Vvent showed minimal VDP bias (≤ 0.35%). Denoising significantly reduced ADC mean and SD (p < 0.05, bias ≤ - 0.63 × 10-2). The values of Tradvent and N2Nvent increased mean membrane and RBC (p < 0.001) with no change in RBC:Membrane. Denoising also reduced SDs of all gas-exchange metrics (p < 0.01).

Conclusions: Low SNR may impair the potential of 129Xe MRI for clinical diagnosis and lung function assessment. The evaluation of supervised and unsupervised DL denoising methods enhanced 129Xe imaging quality, offering promise for improved clinical interpretation and diagnosis.

有监督和无监督深度学习策略对超极化129Xe肺部MRI去噪的比较评价。
目的:降低超极化129Xe MR图像的信噪比(SNR)可以影响研究和诊断评估的准确量化。因此,本研究探讨了有监督深度学习(DL)去噪、传统(Trad)和Noise2Noise (N2N)以及无监督Noise2void (N2V)方法在129Xe MR成像中的应用。方法:在952组129Xe MRI数据集(421组通气数据、125组弥散加权数据和406组气体交换数据)上对DL去噪框架进行训练和测试,并与块匹配3D去噪技术进行比较。评估包括平均信号,噪声标准偏差(SD),信噪比和清晰度。通气缺陷率(VDP)、表观扩散系数(ADC)、膜摄取、红细胞(RBC)转移和RBC:膜分别评估通气、扩散和气体交换图像。结果:降噪方法显著降低了噪声标准差,增强了信噪比(p vent),提高了通风图像的清晰度,但相对于原始图像低估了VDP(偏差= -1.37%),而N2Nvent高估了VDP(偏差= +1.88%)。3D和N2Vvent匹配块显示最小的VDP偏差(≤0.35%)。去噪显著降低ADC平均值和SD (p -2)。结论:低信噪比可能会削弱129Xe MRI在临床诊断和肺功能评估中的潜力。有监督和无监督深度去噪方法的评价提高了129Xe成像质量,为改善临床解释和诊断提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信