Yuanzhong Shen, Zijian Shen, Yimin Huang, Zhuojin Wu, Yixuan Ma, Feng Hu, Kai Shu
{"title":"Multimodal quantitative analysis guides precise preoperative localization of epilepsy.","authors":"Yuanzhong Shen, Zijian Shen, Yimin Huang, Zhuojin Wu, Yixuan Ma, Feng Hu, Kai Shu","doi":"10.1007/s00415-025-13324-5","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy surgery efficacy is critically contingent upon the precise localization of the epileptogenic zone (EZ). However, conventional qualitative methods face challenges in achieving accurate localization, integrating multimodal data, and accounting for variations in clinical expertise among practitioners. With the rapid advancement of artificial intelligence and computing power, multimodal quantitative analysis has emerged as a pivotal approach for EZ localization. Nonetheless, no research team has thus far provided a systematic elaboration of this concept. This narrative review synthesizes recent advancements across four key dimensions: (1) seizure semiology quantification using deep learning and computer vision to analyze behavioral patterns; (2) structural neuroimaging leveraging high-field MRI, radiomics, and AI; (3) functional imaging integrating EEG-fMRI dynamics and PET biomarkers; and (4) electrophysiological quantification encompassing source localization, intracranial EEG, and network modeling. The convergence of these complementary approaches enables comprehensive characterization of epileptogenic networks across behavioral, structural, functional, and electrophysiological domains. Despite these advancements, clinical heterogeneity, limitations in algorithmic generalizability, and barriers to data sharing hinder translation into clinical practice. Future directions emphasize personalized modeling, federated learning, and cross-modal standardization to advance data-driven localization. This integrated paradigm holds promise for overcoming qualitative limitations, reducing medical costs, and improving seizure-free outcomes.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":"272 9","pages":"579"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-025-13324-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy surgery efficacy is critically contingent upon the precise localization of the epileptogenic zone (EZ). However, conventional qualitative methods face challenges in achieving accurate localization, integrating multimodal data, and accounting for variations in clinical expertise among practitioners. With the rapid advancement of artificial intelligence and computing power, multimodal quantitative analysis has emerged as a pivotal approach for EZ localization. Nonetheless, no research team has thus far provided a systematic elaboration of this concept. This narrative review synthesizes recent advancements across four key dimensions: (1) seizure semiology quantification using deep learning and computer vision to analyze behavioral patterns; (2) structural neuroimaging leveraging high-field MRI, radiomics, and AI; (3) functional imaging integrating EEG-fMRI dynamics and PET biomarkers; and (4) electrophysiological quantification encompassing source localization, intracranial EEG, and network modeling. The convergence of these complementary approaches enables comprehensive characterization of epileptogenic networks across behavioral, structural, functional, and electrophysiological domains. Despite these advancements, clinical heterogeneity, limitations in algorithmic generalizability, and barriers to data sharing hinder translation into clinical practice. Future directions emphasize personalized modeling, federated learning, and cross-modal standardization to advance data-driven localization. This integrated paradigm holds promise for overcoming qualitative limitations, reducing medical costs, and improving seizure-free outcomes.
期刊介绍:
The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field.
In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials.
Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.