Ferran Garcia-Pichel, Júlia Farias, Vanessa Fernandes, Daniel Roush, Tami L Swenson, Suzanne M Kosina, Trent R Northen, Huansheng Cao, Samual Jaunin, Raju Kandel, Roberto Gaxiola
{"title":"Swift microbiome-mediated phenotype transfer from transgenic plants.","authors":"Ferran Garcia-Pichel, Júlia Farias, Vanessa Fernandes, Daniel Roush, Tami L Swenson, Suzanne M Kosina, Trent R Northen, Huansheng Cao, Samual Jaunin, Raju Kandel, Roberto Gaxiola","doi":"10.1002/jeq2.70070","DOIUrl":null,"url":null,"abstract":"<p><p>The expression of an organism's genes determines its own characteristics in any given environment. In this study, we demonstrate that the phenotypic traits of genetically modified transgenic Arabidopsis thaliana plants, designed for nutrient efficiency and enhanced yield, can be naturally and readily transferred to neighboring wild-type plants. Our findings reveal that the transgenic plants significantly influence the populational, compositional, and functional traits of their root-associated microbiome (RAM), resulting in a larger population, with distinct composition and high functional potential compared to wild-type plants, regardless of soil type. This phenomenon appears to stem from altered metabolite exudation patterns, which enhance root recruitment. Notably, the RAM plays a dual role: it not only contributes to the robust phenotype of the transgenic plants but also facilitates the transfer of these traits to adjacent wild-type plants. Upon transplanting wild-type plants into the presence of transgenics, we observed the induction of transgenic-like phenotypes. Metagenomic and compositional analyses indicate that this transfer is linked to an increase in 2,3-butanediol (2,3-BD) fermenting bacteria. Furthermore, exposure to 2,3-BD alone was sufficient to elicit transgenic phenotypes in wild-type plants. These results suggest that factors external to plant tissues, such as root-associated bacteria and their volatile metabolic products, play a crucial role in the transferability of plant phenotypes to neighboring plants. Our findings underscore the importance of evaluating microbiome interactions in the context of transgenic organisms and open new avenues for alternative agricultural practices that may reduce reliance on genetic modification.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.70070","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The expression of an organism's genes determines its own characteristics in any given environment. In this study, we demonstrate that the phenotypic traits of genetically modified transgenic Arabidopsis thaliana plants, designed for nutrient efficiency and enhanced yield, can be naturally and readily transferred to neighboring wild-type plants. Our findings reveal that the transgenic plants significantly influence the populational, compositional, and functional traits of their root-associated microbiome (RAM), resulting in a larger population, with distinct composition and high functional potential compared to wild-type plants, regardless of soil type. This phenomenon appears to stem from altered metabolite exudation patterns, which enhance root recruitment. Notably, the RAM plays a dual role: it not only contributes to the robust phenotype of the transgenic plants but also facilitates the transfer of these traits to adjacent wild-type plants. Upon transplanting wild-type plants into the presence of transgenics, we observed the induction of transgenic-like phenotypes. Metagenomic and compositional analyses indicate that this transfer is linked to an increase in 2,3-butanediol (2,3-BD) fermenting bacteria. Furthermore, exposure to 2,3-BD alone was sufficient to elicit transgenic phenotypes in wild-type plants. These results suggest that factors external to plant tissues, such as root-associated bacteria and their volatile metabolic products, play a crucial role in the transferability of plant phenotypes to neighboring plants. Our findings underscore the importance of evaluating microbiome interactions in the context of transgenic organisms and open new avenues for alternative agricultural practices that may reduce reliance on genetic modification.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.