A ptsH mutation suppresses growth defects and antibiotic sensitivity in a cpgA mutant defective in metabolite proofreading.

IF 3 3区 生物学 Q3 MICROBIOLOGY
Journal of Bacteriology Pub Date : 2025-09-18 Epub Date: 2025-08-14 DOI:10.1128/jb.00162-25
Ankita J Sachla, Ahmed Gaballa, Diana Herrera, John D Helmann
{"title":"A <i>ptsH</i> mutation suppresses growth defects and antibiotic sensitivity in a <i>cpgA</i> mutant defective in metabolite proofreading.","authors":"Ankita J Sachla, Ahmed Gaballa, Diana Herrera, John D Helmann","doi":"10.1128/jb.00162-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bacillus subtilis</i> CpgA (<u>c</u>ircularly <u>p</u>ermuted <u>G</u>TPase) is a ribosome assembly GTPase that has a secondary function as a metabolite proofreading enzyme. CpgA hydrolyzes 4-phosphoerythronate, a toxic metabolite produced from erythrose-4-phosphate by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a ∆<i>cpgA</i> strain, carbon sources that feed into the pentose phosphate pathway trigger metabolic intoxication. This results in poor growth and increased sensitivity to antibiotics that block peptidoglycan synthesis, a process reliant on sugars from central metabolism. Here, we describe a mutation in <i>ptsH</i> (<i>ptsH</i>-G54D) that improves growth of a ∆<i>cpgA</i> strain on media containing both glucose and gluconate. The <i>ptsH</i> gene encodes the histidine-containing phosphocarrier protein (HPr) that functions in phosphotransferase system sugar import and gene regulation. Prior studies of HPr suggested three possible mechanisms to account for the ability of HPr-G54D to increase fitness of the ∆<i>cpgA</i> strain: (i) restricting HPr-dependent uptake of glucose, (ii) reducing the GAPDH-dependent production of 4-phosphoerythronate, or (iii) decreasing expression of genes required for uptake and catabolism of gluconate. Here, we present evidence consistent with the third model: HPr-G54D improves fitness of a ∆<i>cpgA</i> strain by increasing catabolite repression of the gluconate operon. Consistently, genetic suppression by HPr-G54D requires Ser46, a site of regulatory phosphorylation important for carbon catabolite repression. In addition, we demonstrate that the metabolic proofreading function of CpgA is conserved among related gram-positive bacteria.IMPORTANCEMetabolism relies on the concerted action of hundreds of enzymes, many of which have some activity with non-canonical substrates. The resulting reactions constitute an often-ignored underground metabolism. Glyceraldehyde-3-phosphate dehydrogenase catalyzes a secondary reaction that produces 4-phosphoerythronate, a toxic dead-end metabolite. <i>Bacillus subtilis</i> CpgA is a widely conserved metabolite proofreading enzyme that protects cells against metabolic intoxication, which can increase antibiotic sensitivity. Loss of CpgA can be suppressed by an altered function mutation affecting the histidine-containing phosphocarrier protein (HPr). This mutant HPr protein increases carbon catabolite repression to restrict import of intoxicating gluconate. These studies highlight the ability of mutations in HPr to rewire carbon catabolism to help avoid the toxic effects of metabolic dysregulation.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0016225"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00162-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus subtilis CpgA (circularly permuted GTPase) is a ribosome assembly GTPase that has a secondary function as a metabolite proofreading enzyme. CpgA hydrolyzes 4-phosphoerythronate, a toxic metabolite produced from erythrose-4-phosphate by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a ∆cpgA strain, carbon sources that feed into the pentose phosphate pathway trigger metabolic intoxication. This results in poor growth and increased sensitivity to antibiotics that block peptidoglycan synthesis, a process reliant on sugars from central metabolism. Here, we describe a mutation in ptsH (ptsH-G54D) that improves growth of a ∆cpgA strain on media containing both glucose and gluconate. The ptsH gene encodes the histidine-containing phosphocarrier protein (HPr) that functions in phosphotransferase system sugar import and gene regulation. Prior studies of HPr suggested three possible mechanisms to account for the ability of HPr-G54D to increase fitness of the ∆cpgA strain: (i) restricting HPr-dependent uptake of glucose, (ii) reducing the GAPDH-dependent production of 4-phosphoerythronate, or (iii) decreasing expression of genes required for uptake and catabolism of gluconate. Here, we present evidence consistent with the third model: HPr-G54D improves fitness of a ∆cpgA strain by increasing catabolite repression of the gluconate operon. Consistently, genetic suppression by HPr-G54D requires Ser46, a site of regulatory phosphorylation important for carbon catabolite repression. In addition, we demonstrate that the metabolic proofreading function of CpgA is conserved among related gram-positive bacteria.IMPORTANCEMetabolism relies on the concerted action of hundreds of enzymes, many of which have some activity with non-canonical substrates. The resulting reactions constitute an often-ignored underground metabolism. Glyceraldehyde-3-phosphate dehydrogenase catalyzes a secondary reaction that produces 4-phosphoerythronate, a toxic dead-end metabolite. Bacillus subtilis CpgA is a widely conserved metabolite proofreading enzyme that protects cells against metabolic intoxication, which can increase antibiotic sensitivity. Loss of CpgA can be suppressed by an altered function mutation affecting the histidine-containing phosphocarrier protein (HPr). This mutant HPr protein increases carbon catabolite repression to restrict import of intoxicating gluconate. These studies highlight the ability of mutations in HPr to rewire carbon catabolism to help avoid the toxic effects of metabolic dysregulation.

ptsH突变抑制代谢产物校对缺陷的cpgA突变体的生长缺陷和抗生素敏感性。
枯草芽孢杆菌(Bacillus subtilis) CpgA (circularly pergated GTPase)是一种核糖体组装GTPase,具有代谢物校对酶的次要功能。CpgA水解4-磷酸赤藓酸酯,这是一种由甘油醛-3-磷酸脱氢酶(GAPDH)产生的有毒代谢物。在∆cpgA菌株中,碳源进入戊糖磷酸途径引发代谢性中毒。这导致生长不良和对阻断肽聚糖合成的抗生素的敏感性增加,肽聚糖合成过程依赖于来自中枢代谢的糖。在这里,我们描述了一种ptsH突变(ptsH- g54d),它可以促进∆cpgA菌株在含有葡萄糖和葡萄糖酸盐的培养基上的生长。ptsH基因编码含组氨酸的磷酸载体蛋白(HPr),在磷酸转移酶系统、糖输入和基因调控中起作用。先前对HPr的研究提出了三种可能的机制来解释HPr- g54d增加∆cpgA菌株适应性的能力:(i)限制HPr依赖的葡萄糖摄取,(ii)减少gapdh依赖的4-磷酸赤藓酸盐的产生,或(iii)减少葡萄糖摄取和分解代谢所需基因的表达。在这里,我们提供了与第三种模型一致的证据:HPr-G54D通过增加葡萄糖酸操纵子的分解代谢抑制来提高∆cpgA菌株的适合度。与此一致的是,HPr-G54D的基因抑制需要Ser46,这是一个对碳分解代谢抑制很重要的调节磷酸化位点。此外,我们证明了CpgA的代谢校对功能在相关的革兰氏阳性菌中是保守的。代谢依赖于数百种酶的协同作用,其中许多酶对非规范底物具有一定的活性。由此产生的反应构成了一种经常被忽视的地下代谢。甘油醛-3-磷酸脱氢酶催化二级反应,产生4-磷酸红斑酸,这是一种有毒的终端代谢物。枯草芽孢杆菌CpgA是一种广泛保守的代谢物校对酶,可以保护细胞免受代谢性中毒,从而增加抗生素的敏感性。CpgA的丢失可以通过影响含组氨酸磷载体蛋白(HPr)的功能突变来抑制。这种突变HPr蛋白增加碳分解代谢抑制,以限制醉人葡萄糖酸盐的进口。这些研究强调了HPr突变重新连接碳分解代谢的能力,以帮助避免代谢失调的毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信